Top-Emitting White Organic Light-Emitting Diodes Based on Cu as Both Anode and Cathode
MU Ye, ZHANG Zhen-Song, WANG Hong-Bo** , QU Da-Long, WU Yu-Kun, YAN Ping-Rui, LI Chuan-Nan, ZHAO Yi**
State Key Laboratory on Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun 130012
Abstract :It is still challenging to obtain broadband emission covering visible light spectrum as much as possible with negligible angular dependence. In this work, we demonstrate a low driving voltage top-emitting white organic light-emitting diode (TEWOLED) based on complementary blue and yellow phosphor emitters with negligible angular dependence. The bottom copper anode with medium reflectance, which is compatible with the standard complementary metal oxide semiconductor (CMOS) technology below 0.13 μm, and the semitransparent multilayer Cs2CO3/Al/Cu cathode as a top electrode, are introduced to realize high-performance TEWOLED. Our TEWOLED achieves high efficiencies of 15.4 cd/A and 12.1 lm/W at a practical brightness of 1000 cd/m2 at low voltage of 4 V.
收稿日期: 2014-12-08
出版日期: 2015-10-02
:
78.60.Fi
(Electroluminescence)
72.80.Le
(Polymers; organic compounds (including organic semiconductors))
引用本文:
. [J]. 中国物理快报, 2015, 32(09): 97801-097801.
MU Ye, ZHANG Zhen-Song, WANG Hong-Bo, QU Da-Long, WU Yu-Kun, YAN Ping-Rui, LI Chuan-Nan, ZHAO Yi. Top-Emitting White Organic Light-Emitting Diodes Based on Cu as Both Anode and Cathode. Chin. Phys. Lett., 2015, 32(09): 97801-097801.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/32/9/097801
或
https://cpl.iphy.ac.cn/CN/Y2015/V32/I09/97801
[1] Prache O 2001 Displays 22 49 [2] Lee J Y, Kwon J H and Chung H K 2003 Org. Electron. 4 143 [3] Kreye D, Toerker M, Vogel U and Amelung J 2006 Conf. Organic Light Emitting Mater. Devices X (San Diego CA 13–16 august 2006) 6333 p L3331 [4] Wacyk I, Prache O and Ali T, Khayrullin I and Ghosh A 2010 Conference on Three-Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defence, Security, and Avionics IV (Orlando FL 6–8 APR 2010) 7690 p 76901I [5] Lu M H, Weaver M S, Zhou T X Eothman M, Kwong R C, Hack M and Brown J J 2002 Appl. Phys. Lett. 18 3921 [6] Ji W Y, Zhang L T, Zhang T Y, Xie W F and Zhang H Z 2010 Org. Electron. 11 202 [7] Xie G H, Xue Q, Chen P, Tao C, Zhao C M, Lu J H, Gong Z X, Zhang T Y, Huang R, Du H, Xie W F, Hou J Y, Zhao Y and Liu S Y 2010 Org. Electron. 11 407 [8] Chen S F, Xie J, Yang Y, Chen C Y and Huang W 2010 J. Phys. D: Appl. Phys. 43 365101 [9] Kanno H, Sun Y and Forrest S R 2005 Appl. Phys. Lett. 86 263502 [10] Levy G B, Evans W, Ebner J, Farrell P, Hufford M, Allison B H, Wheeler D, Lin H Q, Prache O and Naviasky E 2002 IEEE J. Solid-State Circuits 37 1879 [11] Hsu S F, Lee C C, Hwang S W and Chen C H 2005 Appl. Phys. Lett. 86 253508 [12] Thomschke M, Nitsche R, Furno M and Leo K 2009 Appl. Phys. Lett. 94 083303 [13] Freitag P, Reineke S, Furno M, Lüssem B and Leo K 2010 Conf. Organic Photon. IV (Brussels BELGIUM 12-15 APR 2010) 7722 p 77221D [14] Lin C L, Lin H W and Wu C C 2005 Appl. Phys. Lett. 87 021101 [15] Tokito S, Tsutsui T and Taga Y 1999 J. Appl. Phys. 86 2407 [16] Bulovic V, Tian P, Burrows P E, Gokhale M R, Forrest S F and Thompson M E 1997 Appl. Phys. Lett. 70 2954 [17] Kim H K, Lee K S and Kwon J H 2006 Appl. Phys. Lett. 88 012103 [18] Xie G H, Zhang Z S, Xue Q, Zhang S M, Zhao L, Luo Y, Chen P, Quan B F, Zhao Y and Liu S Y 2010 Org. Electron. 11 2055 [19] Zhang Z S, Yan P R, Yue S Z, Xie G H, Chen Y, Wu Q Y, Qu D L, Zhao Y and Liu S Y 2013 Org. Electron. 14 1452 [20] Su S J, Sasabe H, Takeda T and Kido J 2008 Chem. Mater. 20 1691 [21] Lee J H, Huang C L, Hsiao C H, Leung M K, Yang C C and Chao C C 2009 Appl. Phys. Lett. 94 223301 [22] Zheng Y, Eom S H, Chopra N, Lee J, So F and Xue J G 2008 Appl. Phys. Lett. 92 223301 [23] Holmes R J, Forrest S R, Sajoto T, Tamayo A, Djurovich P I, Thompson M E, Brooks J, Tung Y J, D`Andrade B W, Weaver M S, Kwong R C and Brown J J 2005 Appl. Phys. Lett. 87 243507 [24] Huang S Y, Huang H F, Chao T C, Tseng M R, Chao Y C and Horng S F 2010 Synth. Met. 160 2393 [25] Chen S F, Deng L L, Xie J, Peng L, Xie L H, Fan Q L and Huang W 2010 Adv. Mater. 22 5227 [26] Yang C J, Liu S H, Hsieh H H, Liu C C, Cho T Y and Wu C C 2007 Appl. Phys. Lett. 91 253508 [27] Xie J, Chen C Y, Chen S F, Yang Y, Shao M, Guo X, Fan Q L and Huang W 2011 Org. Electron. 12 322 [28] Zhu X, Sun J, Yu X, Wong M and Kwok H S 2007 Jpn. J. Appl. Phys. 46 4054 [29] Freitag P, Reineke S, Olthof S, Furno M, Lüssem B and Leo K 2010 Org. Electron. 11 1676 [30] Giebink N and Forrest S R 2008 Phys. Rev. B 77 235215 [31] Reineke S, Walzer K and Leo K 2007 Phys. Rev. B 75 125328 [32] Su S J, Gonmori E, Sasable H and Kido J 2008 Adv. Mater. 20 4189 [33] Eom S H, Zheng Y, Wrzesniewski E, Lee J, Chopra N, So F and Xue J 2009 Appl. Phys. Lett. 94 153303 [34] Wang Q, Ding J, Ma D, Cheng Y, Wang L, Jing X and Wang F 2009 Adv. Funct. Mater. 19 84 [35] Tokito S, Lijima T, Tsuzuki T and Sato F 2003 Appl. Phys. Lett. 83 2459 [36] D`Andrade B W, Holmes R J and Forrest S R 2004 Adv. Mater. 16 624
[1]
. [J]. 中国物理快报, 2022, 39(12): 128401-.
[2]
. [J]. 中国物理快报, 2022, 39(3): 37801-.
[3]
. [J]. 中国物理快报, 2020, 37(2): 27302-.
[4]
. [J]. 中国物理快报, 2019, 36(8): 88501-.
[5]
. [J]. 中国物理快报, 2019, 36(5): 57301-.
[6]
. [J]. 中国物理快报, 2019, 36(2): 28501-.
[7]
. [J]. 中国物理快报, 2018, 35(9): 98501-.
[8]
. [J]. 中国物理快报, 2018, 35(8): 87302-.
[9]
. [J]. 中国物理快报, 2018, 35(5): 57303-.
[10]
. [J]. 中国物理快报, 2018, 35(2): 27301-.
[11]
. [J]. 中国物理快报, 2017, 34(9): 97801-.
[12]
. [J]. 中国物理快报, 2017, 34(7): 77203-.
[13]
. [J]. 中国物理快报, 2017, 34(7): 77301-.
[14]
. [J]. 中国物理快报, 2017, 34(1): 17301-017301.
[15]
. [J]. 中国物理快报, 2016, 33(11): 117302-117302.