Anomalous Channel Length Dependence of Hot-Carrier-Induced Saturation Drain Current Degradation in n-Type MOSFETs
ZHANG Chun-Wei1 , LIU Si-Yang1 , SUN Wei-Feng1** , ZHOU Lei-Lei1 , ZHANG Yi1 , SU Wei2 , ZHANG Ai-Jun2 , LIU Yu-Wei2 , HU Jiu-Li2 , HE Xiao-Wei2
1 National ASIC System Engineering Technology Research Center, Southeast University, Nanjing 2100962 CSMC Technologies Corporation, Wuxi 214028
Abstract :The dependencies of hot-carrier-induced degradations on the effective channel length L ch, eff are investigated for n-type metal-oxide-semiconductor field effect transistor (MOSFETs). Our experiments find that, with decreasing L ch, eff , the saturation drain current (I dsat ) degradation is unexpectedly alleviated. The further study demonstrates that the anomalous L ch, eff dependence of I dsat degradation is induced by the increasing influence of the substrate current degradation on the I dsat degradation with L ch, eff reducing.
收稿日期: 2015-04-08
出版日期: 2015-09-02
:
85.30.Tv
(Field effect devices)
85.30.De
(Semiconductor-device characterization, design, and modeling)
85.30.-z
(Semiconductor devices)
引用本文:
. [J]. 中国物理快报, 2015, 32(08): 88502-088502.
ZHANG Chun-Wei, LIU Si-Yang, SUN Wei-Feng, ZHOU Lei-Lei, ZHANG Yi, SU Wei, ZHANG Ai-Jun, LIU Yu-Wei, HU Jiu-Li, HE Xiao-Wei. Anomalous Channel Length Dependence of Hot-Carrier-Induced Saturation Drain Current Degradation in n-Type MOSFETs. Chin. Phys. Lett., 2015, 32(08): 88502-088502.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/32/8/088502
或
https://cpl.iphy.ac.cn/CN/Y2015/V32/I08/88502
[1] Guérin C, Huard V and Bravaix A 2007 IEEE Trans. Device Mater. Reliab. 7 225 [2] Huang H L, Chen J K and Houng M P 2013 Solid-State Electron. 79 31 [3] Liu H X, Hao Y, Hawkins I D and Peaker A R 2005 Chin. Phys. 14 1644 [4] Liang B, Cheng J Z and Chi Y Q 2014 Chin. Phys. B 23 117304 [5] Khandker N Q, Ping K K and Hu C 1993 IEEE Symp. VLSI Technol. 13 [6] Chen J F and Tsao C P 2003 Appl. Phys. Lett. 83 1872 [7] Shahidi G G and Antoniadis D A 1988 IEEE Electron Device Lett. 9 497 [8] Thewes R, Walter G H, Brederlow R, Schlunder C, Schwerin A V, Jurk R, Linnenbank C G, Lengauer G, Schmitt L D and Weber W 1999 Proc. IRPS P 233 (San Diego) [9] Hu S G, Hao Y, Ma X H, Cao Y R, Chen C and Wu X F 2009 Chin. Phys. Lett. 26 017304 [10] Chen H F, Hao Y, Ma X H, Cao Y R, Gao Z Y and Gong X 2007 Chin. Phys. 16 3114 [11] Liu S, Sun W, Zhu R, Huang T and Zhang C 2013 IEEE Trans. Electron Devices 60 3632 [12] Varghese D, Moens P and Ashraful M 2010 IEEE Trans. Electron Devices 57 2704 [13] Lei X Y, Liu H X, Zhang K, Zhang Y, Zheng X F, Ma X H and Hao Y 2013 Chin. Phys. B 22 047304 [14] Pobegen G, Tyaginov S, Nelhiebel M and Grasser T 2013 IEEE Electron Device Lett. 34 939 [15] Huang Y H, Shih J R, Lee Y H, Hsieh S, Liu C C, Wu K and Chou H L 2010 Proc. IRPS 170 (Garden Grove) [16] Sun W, Zhang C, Liu S, Huang T, Yu C, Su W, Zhang A, Liu Y, He X and Wu X 2014 IEEE Electron Device Lett. 35 690 [17] Liu S, Yu B, Sun W, Zhu J, Zhang C, Li H and Yi Y 2014 Proc. ISPSD 185 (Hawaii) [18] Tsai H W and Ker M D 2014 IEEE Trans. Device Mater. Reliab. 14 493 [19] Hu C, Tam S C, Hsu F C, Ko P G, Chan T Y and Terrill K W 1985 IEEE Trans. Electron Devices 32 375
[1]
. [J]. 中国物理快报, 2020, 37(9): 98501-.
[2]
. [J]. 中国物理快报, 2020, 37(8): 88501-.
[3]
. [J]. 中国物理快报, 2020, 37(4): 46101-.
[4]
. [J]. 中国物理快报, 2019, 36(7): 78501-.
[5]
. [J]. 中国物理快报, 2018, 35(12): 127302-.
[6]
. [J]. 中国物理快报, 2018, 35(9): 98502-.
[7]
. [J]. 中国物理快报, 2018, 35(4): 46102-.
[8]
. [J]. 中国物理快报, 2018, 35(4): 48502-.
[9]
. [J]. 中国物理快报, 2018, 35(3): 38501-.
[10]
. [J]. 中国物理快报, 2018, 35(2): 28501-.
[11]
. [J]. 中国物理快报, 2017, 34(12): 128501-.
[12]
. [J]. 中国物理快报, 2017, 34(7): 76104-.
[13]
. [J]. 中国物理快报, 2017, 34(7): 78502-.
[14]
. [J]. 中国物理快报, 2017, 34(5): 58502-.
[15]
. [J]. 中国物理快报, 2017, 34(1): 18501-018501.