Suppressing Charge Recombination in ZnO-Nanorod-Based Perovskite Solar Cells with Atomic-Layer-Deposition TiO2
DONG Juan1 , XU Xin1 , SHI Jiang-Jian1 , LI Dong-Mei1 , LUO Yan-Hong1 , MENG Qing-Bo1** , CHEN Qiang2**
1 Key Laboratory for Renewable Energy (CAS), Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 1001902 Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600
Abstract :ZnO nanorods are passivated with a TiO2 interfacial layer prepared by the atomic layer deposition method and applied in the CH3 NH3 PbI3 perovskite solar cell, which show a positive effect on the fill factor and power conversion efficiency. With TiO2 interfacial passivation, the charge recombination in the ZnO/CH3 NH3 PbI3 interface is effectively suppressed and the maximum power conversion efficiency is enhanced from 11.9% to 13.4%.
收稿日期: 2015-01-17
出版日期: 2015-07-30
:
84.60.Jt
(Photoelectric conversion)
79.60.Jv
(Interfaces; heterostructures; nanostructures)
84.60.Bk
(Performance characteristics of energy conversion systems; figure of merit)
82.45.Yz
(Nanostructured materials in electrochemistry)
引用本文:
. [J]. 中国物理快报, 2015, 32(07): 78401-078401.
DONG Juan, XU Xin, SHI Jiang-Jian, LI Dong-Mei, LUO Yan-Hong, MENG Qing-Bo, CHEN Qiang. Suppressing Charge Recombination in ZnO-Nanorod-Based Perovskite Solar Cells with Atomic-Layer-Deposition TiO2 . Chin. Phys. Lett., 2015, 32(07): 78401-078401.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/32/7/078401
或
https://cpl.iphy.ac.cn/CN/Y2015/V32/I07/78401
[1] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry B R, Yum J H, Moser J E, Gratzel M and Park N G 2012 Sci. Rep. 2 591 [2] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643 [3] Shi J J, Dong W, Xu Y Y, Li C H, Lv S T, Zhu L F, Dong J, Luo Y H, Li D M, Meng Q B and Chen Q 2013 Chin. Phys. Lett. 30 128402 [4] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050 [5] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S and Seok S I 2014 Nat. Mater. 13 897 [6] Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2014 Prog. Photovolt.: Res. Appl. 22 701 [7] Im J H, Jang I H, Pellet N, Gr?tzel M and Park N G 2014 Nat. Nanotechnol. 181 [8] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542 [9] Snaith H J 2013 J. Phys. Chem. Lett. 4 3623 [10] Park N G 2013 J. Phys. Chem. Lett. 4 2423 [11] Bi D, Moon S J, H ?ggman L, Boschloo G, Yang L, Johansson E M, Nazeeruddin M K, Gr?tzel M and Hagfeldt A 2013 RSC Adv. 3 18762 [12] Qiu J, Qiu Y, Yan K, Zhong M, Mu C, Yan H and Yang S 2013 Nanoscale 5 3245 [13] Li W, Dong H, Guo X, Li N, Li J, Niu G and Wang L 2014 J. Mater. Chem. A 2 20105 [14] Son D Y, Im J H, Kim H S and Park N G 2014 J. Phys. Chem. C 118 16567 [15] Kim K D, Lim D C, Hu J, Kwon J D, Jeong M G, Seo H O, Lee J Y, Jang K Y, Lim J H, Lee K H, Jeong Y, Kim Y D and Cho S 2013 ACS Appl. Mater. Inter. 5 8718 [16] Dong J, Zhao Y, Shi J, Wei H, Xiao J, Xu X, Luo J, Xu J, Li D, Luo Y and Meng Q 2014 Chem. Commun. 50 13381 [17] George S M 2010 Chem. Rev. 110 111 [18] Xu C, Shin P, Cao L and Gao D 2010 J. Phys. Chem. C 114 125 [19] Wang H, Kubo T, Nakazaki J, Kinoshita T and Segawa H 2013 J. Phys. Chem. Lett. 4 2455 [20] Massimo T, Chittaranjan D and Dieter S 2014 Beilstein J. Nanotechnol. 5 77 [21] Dey N K, Kim M J, Kim K D, Seo H O, Kim D, Kim Y D, Lim D C and Lee K H 2011 J. Mol. Catal. A-Chem. 337 33 [22] Lv S, Han L, Xiao J, Zhu L, Shi J, Wei H, Xu Y, Dong J, Xu X, Li D, Wang S, Luo Y, Meng Q and Li X 2014 Chem. Commun. 50 6931 [23] Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y and Meng Q 2014 Appl. Phys. Lett. 104 063901 [24] Fabregat S F, Garcia B G, Mora S I and Bisquert J 2011 Phys. Chem. Chem. Phys. 13 9083 [25] Gonzalez P V, Juarez P E J, Arsyad W S, Barea E M, Fabregat S F, Mora S I and Bisquert J 2014 Nano Lett. 14 888 [26] Juarez P E J, Wu?ler M, Fabregat S F, Lakus W K, Mankel E, Mayer T, Jaegermann W and Mora S I 2014 J. Phys. Chem. Lett. 5 680
[1]
. [J]. 中国物理快报, 2021, 38(10): 107801-.
[2]
. [J]. 中国物理快报, 2020, 37(10): 108401-.
[3]
. [J]. 中国物理快报, 2019, 36(5): 57201-.
[4]
. [J]. 中国物理快报, 2019, 36(2): 28401-.
[5]
. [J]. 中国物理快报, 2018, 35(4): 46101-.
[6]
. [J]. 中国物理快报, 2018, 35(2): 28401-.
[7]
. [J]. 中国物理快报, 2017, 34(7): 76106-.
[8]
. [J]. 中国物理快报, 2017, 34(6): 68801-.
[9]
. [J]. 中国物理快报, 2017, 34(2): 26101-026101.
[10]
. [J]. 中国物理快报, 2017, 34(2): 28201-028201.
[11]
. [J]. 中国物理快报, 2017, 34(2): 28801-028801.
[12]
. [J]. 中国物理快报, 2016, 33(05): 56102-056102.
[13]
. [J]. 中国物理快报, 2016, 33(05): 58801-058801.
[14]
. [J]. 中国物理快报, 2015, 32(12): 128401-128401.
[15]
. [J]. 中国物理快报, 2015, 32(11): 118401-118401.