Scattering of Scalar Wave by Extended Black Hole in f (R ) Gravity
LIAO Ping, ZHANG Ruan-Jing, CHEN Ju-Hua** , WANG Yong-Jiu
College of Physics and Information Science, Hunan Normal University, Changsha 410081
Abstract :We analyze the Schr?dinger-type scalar wave equation of an extended black hole in f (R ) gravity, and numerically investigate its absorption/scattering cross sections using the partial wave method. It is found that the dimension of length α makes the peak value of the effective scattering potential fall down, and the absorption cross section oscillates around the geometric optical value in the high frequency regime. We can also see that the scattering flux becomes stronger and its angle width becomes narrower in the forward direction, the glory peak becomes lower and the glory width becomes narrower along the backward direction when the coupling parameter α increases.
收稿日期: 2014-11-27
出版日期: 2015-06-01
:
04.70.-s
(Physics of black holes)
04.40.-b
(Self-gravitating systems; continuous media and classical fields in curved spacetime)
04.50.Gh
(Higher-dimensional black holes, black strings, and related objects)
[1] Sánchez N 1977 Phys. Rev. D 16 937 [2] Sánchez N 1978 Phys. Rev. D 18 1030 [3] Porto R A 2008 Phys. Rev. D 77 064026 [4] Unruh W G 1976 Phys. Rev. D 14 3251 [5] Rogatko M and Szyplowska A 2009 Phys. Rev. D 79 104005 [6] Crispino L C B, Oliveira E S, Higuchi A and Matsas G E A 2007 Phys. Rev. D 75 104012 [7] Oliveira E S, Dolan S and Crispino L C B 2010 Phys. Rev. D 81 124013 [8] Crispino L C B, Oliveira E S and Matras G E A 2007 Phys. Rev. D 76 107502 [9] Crispino L C B and Olivera E S 2008 Phys. Rev. D 78 024011 [10] Macedo C F B, Leite L C S, Oliveira E S, Dolan S R and Crispino L C B 2013 Phys. Rev. D 88 064033 [11] Liao P, Chen J H, Huang H and Wang Y J 2014 Gen. Relativ. Gravit. 46 1752 [12] Huang H, Liao P, Chen J H and Wang Y J 2014 J. Grav. 2014 231727 [13] Huang H, Jiang M J, Chen J H and Wang Y J 2015 Gen. Relativ. Gravit. 47 8 [14] Chen J H, Liao H and Wang Y J 2013 Eur. Phys. J. C 73 2395 [15] Sotiriou T P and Faraoni V 2010 Rev. Mod. Phys. 82 451 [16] Multam?ki T and Vilja I 2006 Phys. Rev. D 74 064022 [17] Bean R, Bernat D, Pogosian L, Silvestri A and Trodden M 2007 Phys. Rev. D 75 064020 [18] Bertolami O, Bohmer C G, Harko T and Lobo F S N 2007 Phys. Rev. D 75 104016 [19] Nzioki A M, Dunsby P K S, Goswami R and Carloni S 2011 Phys. Rev. D 83 024030 [20] Sebastian S and Kuriakose V C arXiv:1401.3480[gr-qc] [21] Sebastiani L and Zerbini S 2011 Eur. Phys. J. C 71 1591 [22] Crispino L C B, Sam Dolan and Oliveira E S 2009 Phys. Rev. D 79 064022 [23] Décanini Y, Folacci A and Raffaelli B 2010 Phys. Rev. D 81 104039 [24] Doran C, Lasenby A, Sam Dolan and Hinder I 2005 Phys. Rev. D 71 124020 [25] Higuchi A 2001 Class. Quantum Grav. 18 L139 [26] Chen J H, Liao H and Wang Y J 2011 Phys. Lett. B 705 124 [27] Liao H, Chen J H and Wang Y J 2012 Int. J. Mod. Phys. D 21 1250045 [28] Dey A, Roy P and Sarkar T 2013 arXiv:1303.6824v1[gr-qc] [29] Gotfried K and Yan T M 2004 Quantum Mechanics: Fundmentals (New York: Springer) 2nd edn [30] Dolan S R, Oliverira E S and Crispino L C B 2009 Phys. Rev. D 79 064014 [31] Dolan S R, Doran C J L and Lasemby A N 2006 Phys. Rev. D 74 064005 [32] Liao H, Chen J H and Wang Y J 2013 Int. J. Theor. Phys. 52 1474
[1]
. [J]. 中国物理快报, 2019, 36(3): 30401-.
[2]
. [J]. 中国物理快报, 2018, 35(5): 50401-.
[3]
. [J]. 中国物理快报, 2018, 35(4): 40401-.
[4]
. [J]. 中国物理快报, 2018, 35(1): 10401-.
[5]
. [J]. 中国物理快报, 2017, 34(8): 80402-.
[6]
. [J]. 中国物理快报, 2017, 34(5): 50401-.
[7]
. [J]. 中国物理快报, 2017, 34(1): 10401-010401.
[8]
. [J]. 中国物理快报, 2016, 33(10): 100403-100403.
[9]
. [J]. 中国物理快报, 2015, 32(10): 100401-100401.
[10]
. [J]. 中国物理快报, 2015, 32(08): 80401-080401.
[11]
. [J]. 中国物理快报, 2014, 31(06): 60401-060401.
[12]
. [J]. 中国物理快报, 2013, 30(10): 100401-100401.
[13]
. [J]. 中国物理快报, 2013, 30(9): 90401-090401.
[14]
. [J]. 中国物理快报, 2013, 30(6): 60401-060401.
[15]
. [J]. 中国物理快报, 2012, 29(10): 100401-100401.