Abstract:An SF6/CF4 cyclic reactive-ion etching (RIE) method is proposed to suppress the surface roughness and to optimize the morphology of Ge fin, aiming at the fabrication of superior Ge FinFETs for future CMOS technologies. The surface roughness of the Ge after RIE can be sufficiently reduced by introducing SF6-O2 etching steps into the CF4-O2 etching process, while maintaining a relatively large ratio of vertical etching over horizontal etching of the Ge. As a result, an optimized rms roughness of 0.9 nm is achieved for Ge surfaces after the SF6/CF4 cyclic etching with a ratio of greater than four for vertical etching over horizontal etching of the Ge, by using a proportion of 60% for SF6-O2 etching steps.
. [J]. 中国物理快报, 2015, 32(4): 45202-045202.
MA Xue-Zhi, ZHANG Rui, SUN Jia-Bao, SHI Yi, ZHAO Yi. Reduction of Reactive-Ion Etching-Induced Ge Surface Roughness by SF6/CF4 Cyclic Etching for Ge Fin Fabrication. Chin. Phys. Lett., 2015, 32(4): 45202-045202.
[1] Takagi S, Mizuno T, Tezuka T et al 2003 IEEE Int. Electron. Devices Meeting p 57 [2] Auth C, Allen C, Blattner A et al 2012 IEEE Symposia VLSI Technol. Circuits (Hawaii 11–15 June 2012) [3] Ruch J G 1972 IEEE Trans. Electron Devices19 652 [4] Yu W, Nowak C H J, Noda K and Hu C 1997 IEEE Trans. Electron Devices44 627 [5] Zhao Y, Takenaka M and Takagi S 2009 IEEE Trans. Electron Devices56 1152 [6] Zhao Y, Takenaka M and Takagi S 2009 IEEE Electron Device Lett.30 987 [7] http://www.itrs.net/Links/2013ITRS/Summary2013.htm [8] Shang H, Frank M M, Gusev E P, Chu J O, Bedell S W, Guarini K W and Ieong M 2006 IBM J. Res. Develop.50 377 [9] Saraswat K C, Chui C O, Krishnamohan T, Nayfeh A and McIntyre P 2005 Microelectron. Eng.80 15 [10] Wang H J, Han G Q, Liu Y, Yan J, Zhang C F, Zhang J C and Hao Y 2014 Chin. Phys. Lett.31 058503 [11] Duriez B, Vellianitis G, van Dal M J H et al 2012 IEEE Int. Electron. Devices Meeting (San Francisco CA 10–13 December 2012) p 523 [12] Dal M J H van, Vellianitis G, Doornbos G et al 2013 IEEE Int. Electron. Devices Meeting (Washington D.C 09–11 December 2013) p 521 [13] Yu W B, Nowak C H J, Noda K and Hu C 1997 IEEE Trans. Electron Devices44 627 [14] Huang X, Lee W C, Kuo C, Hisamoto D et al 1999 IEEE Int. Electron. Devices Meeting (Washington D.C 5–8 December 1999) p 67 [15] Hisamoto D, Lee W C, Kedzierski J et al 2000 IEEE Trans. Electron Devices47 2320 [16] Duriez B, Vellianitis G, van Dal M J H et al 2013 IEEE Int. Electron. Devices Meeting (Washington D.C 09–11 December 2013) p 2011 [17] Wang J C, Du G, Wei K L et al 2012 Chin. Phys. B 21 117308 [18] Zhang R, Yu X, Takenaka M and Takagi S 2014 IEEE Trans. Electron Devices61 2316 [19] Lee C H, Nishimura T, Tabata T, Lu C, Zhang W F, Nagashio K and Toriumi A 2013 IEEE Int. Electron. Devices Meeting (Washington DC 09–11 December 2013) p 33 [20] Lee C H, Liu C, Tabata T, Nishimura T, Nagashio K and Toriumi A 2013 IEEE Symposia VLSI Technol. Circuits (Taipei 22–24 April 2013) p 28 [21] Liu B, Gong X, Zhan C, Han G, Chin H C et al 2013 IEEE Trans. Electron Devices60 1852 [22] Onsia B, Conard T, de Gendt S et al 2004 7th Int. Symp. UCPSS (Brussels Belgium 20–22 September 2004) p 20 [23] Shamiryan D, Redolfi A and Boullart W 2009 Microelectron. Eng.86 96 [24] Oehrlein G S, Bestwick T D, Jones P L, Jaso M A and Lindstr?m J L 1991 J. Electronchem. Soc.138 1443 [25] Dal M J H van, Vellianitis G, Doornbos G et al 2012 IEEE Int. Electron. Devices Meeting (San Francisco CA 10–13 December 2012) p 521 [26] Qin J Y, Du G and Liu X Y 2013 Chin. Phys. B 22 107104 [27] Wang J X, Yang S Y, Wang J et al 2013 Chin. Phys. B 22 077305 [28] Baravelli E, Marchi L D and Speciale N 2009 Solid-State Electron.53 1303 [29] Kim T S, Yang H Y, Kil Y H, Jeong T S, Kang S and Shim K H 2009 J. Korean Phys. Soc.54 2290 [30] Shim K, Yang H, Kil Y, Yang H, Yang J, Hong W, Kang S, Jeong T and Kim T 2012 Electron. Mater. Lett.8 423 [31] Campo A, Cardinaud C and Turban G 1995 J. Vac. Sci. Technol. B 13 235