Polarization-Stable 980 nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture
WU Hua1,2 , LI Chong1 , HAN Min-Fu1 , WANG Wen-Juan1 , SHI Lei1 , LIU Qiao-Li1 , LIU Bai1 , DONG Jian1 , GUO Xia1**
1 Photonic Device Research Laboratory, College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 1001242 College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000
Abstract :Polarization-stable 980 nm oxide-confined vertical-cavity surface-emitting lasers with 3 m diamond-shaped aperture are fabricated by comprehensively utilizing the anisotropic properties of wet etching and wet nitrogen oxidation of III–V semiconductor materials. Polarization-stable operation along the major axis of the diamond-shaped oxide aperture with 11 dB orthogonal polarization suppression ratio is achieved in a temperature range of 15–55°C from the threshold to 4 mA.
收稿日期: 2014-12-21
出版日期: 2015-04-30
引用本文:
. [J]. 中国物理快报, 2015, 32(4): 44202-044202.
WU Hua, LI Chong, HAN Min-Fu, WANG Wen-Juan, SHI Lei, LIU Qiao-Li, LIU Bai, DONG Jian, GUO Xia. Polarization-Stable 980 nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture. Chin. Phys. Lett., 2015, 32(4): 44202-044202.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/32/4/044202
或
https://cpl.iphy.ac.cn/CN/Y2015/V32/I4/44202
[1] Larsson A 2011 IEEE J. Sel. Top. Quantum Electron. 17 1552 [2] Dalir H and Koyama F 2013 Appl. Phys. Lett. 103 091109 [3] Tan F, Wu M K, Liu M, Feng M and Holonyak J N 2013 Appl. Phys. Lett. 103 141116 [4] Miah M J, Samaneh A A, Kern A, Wahl D, Debernardi P and Michalzik R 2013 IEEE J. Sel. Top. Quantum Electron. 19 1701410 [5] Choquette K D, Richie D A and Leibenguth R E 1994 Appl. Phys. Lett. 64 2062 [6] Tatum J A 2014 Proc. SPIE 9001 90010C [7] Grabher M, King R, Jager R, Wiedenmann D, Gerlach P, Ducheck D and Wimmer C 2008 Proc. SPIE 6908 690803 [8] Debernardi P, Unold H J, Maehnss J, Michalzik R, Bava G P and Ebeling K J 2003 IEEE J. Sel. Top. Quantum Electron. 9 1394 [9] Lee K H, Baek J H, Hwang I K and Lee Y H 2004 Opt. Express 12 4136 [10] Li S, Guan B L, Shi G Z and Guo X 2012 Acta Phys. Sin. 61 184208 (in Chinese) [11] Samaneh A A, Sanayeh M B, Miah M J, Schwarz W, Wahl D, Kern A and Michalzik R 2012 Appl. Phys. Lett. 101 171104 [12] Rao Y, Yang W J, Chase C, Huang M C Y, Worland D P, Khaleghi S, Chitgarha M R, Ziyadi M, Willner A E and Hasnain C J C 2013 IEEE J. Sel. Top. Quantum Electron. 19 1701311 [13] Tarui Y, Komiya Y and Harada Y 1971 J. Electrochem. Soc. 118 118 [14] Choquette K D, Geib K M, Ashby C H, Twesten R D, Hou H Q, Follstaedt D M, Hammons B E, Mathes D and Hull R 1997 IEEE J. Sel. Top. Quantum Electron. 3 916 [15] Cheng P, Gao J H, Kang X J, Lin S M, Zhang G B, Liu S A and Hu G X 2000 Chin. J. Semicond. 21 28 [16] Weigl B, Grabherr M, Jung C, Jager R, Reiner G, Michalzik R, Sowada D and Ebeling K J 1997 IEEE J. Sel. Top. Quantum Electron. 3 409 [17] Molitor A, Blazek M, Ostermann J M, Michalzik R, Debernardi P and Elsaesser W 2010 IEEE J. Quantum Electron. 46 554 [18] Nhan E and Riyopoulos S 2006 J. Appl. Phys. 99 123101 [19] Bond A, Dapkus P D and O'Brien J D 1999 IEEE J. Sel. Top. Quantum Electron. 5 574 [20] Riyopoulos S and Nhan E 2004 Appl. Phys. Lett. 85 3038
[1]
. [J]. 中国物理快报, 2023, 40(1): 14201-.
[2]
. [J]. 中国物理快报, 0, (): 64201-.
[3]
. [J]. 中国物理快报, 2020, 37(6): 64201-.
[4]
. [J]. 中国物理快报, 2020, 37(5): 54203-.
[5]
. [J]. 中国物理快报, 2020, 37(4): 44206-.
[6]
. [J]. 中国物理快报, 2020, 37(4): 44207-.
[7]
. [J]. 中国物理快报, 2019, 36(10): 104201-.
[8]
. [J]. 中国物理快报, 2019, 36(8): 84201-.
[9]
. [J]. 中国物理快报, 2018, 35(4): 44202-.
[10]
. [J]. 中国物理快报, 2018, 35(3): 34202-.
[11]
. [J]. 中国物理快报, 2018, 35(2): 24202-.
[12]
. [J]. 中国物理快报, 2017, 34(9): 97801-.
[13]
. [J]. 中国物理快报, 2017, 34(8): 84202-.
[14]
. [J]. 中国物理快报, 2017, 34(7): 74202-.
[15]
. [J]. 中国物理快报, 2017, 34(7): 74205-.