Propagation and Interaction of Edge Dislocation (Kink) in the Square Lattice
JIA Li-Ping1 , Jasmina Tekić2 , DUAN Wen-Shan1**
1 College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou 730070
2 Vinca Institute of Nuclear Sciences, Laboratory for Theoretical and Condensed Matter Physics, University of Belgrade, Belgrade 11001, Serbia
Abstract :The propagation of kink or edge dislocations in the underdamped generalized two-dimensional Frenkel–Kontorova model with harmonic interaction is studied with numerical simulations. The obtained results show that exactly one line of atoms can be inserted into the lattice, which remains at standstill. However, if more than one line of atoms are inserted into the lattice, then they will split into several lines with α =1, where α presents the atoms inserted. In other words, only the kink with α =1 is stable, while the other kinks are unstable, and will split into α =1 kinks, which remain at standstill.
收稿日期: 2014-10-14
出版日期: 2015-04-30
:
05.10.-a
(Computational methods in statistical physics and nonlinear dynamics)
45.05.+x
(General theory of classical mechanics of discrete systems)
05.50.+q
(Lattice theory and statistics)
[1] Kontorova T A and Frenkel Y I 1938 Zh. Eksp Teor Fiz 8 89
[2] Braun O M and Pcyrard M 1995 Phys. Rev. E 51 4999
[3] Frenkel Y I 1972 Introduction to the Theory of Metals (Leningrad: Nauka) (in Russian)
[4] Kovalev A S, Kondratyuk A D, Kosevich A M and Landau A I 1993 Phys. Status Solidi B 177 117
[5] Franzosi P, Salviati G, Scaffardi M, Genova F, PelLegrino S and Stano A 1988 J. Cryst. Growth 88 135
[6] Yang Y N, Trafas B M, Siefert R L and Weaver J H 1991 Phys. Rev. B 44 3218
[7] Watanabe S, van der Zant H S J, Strogatz S H and Orlando T P 1996 Physica D 97 429
[8] Oudenaarden A van and Mooij J E 1996 Phys. Rev. Lett. 76 4947
[9] Niu Q and Nori F 1989 Phys. Rev. B 39 2134
[10] Grner G 1988 Rev. Mod. Phys. 60 1129
[11] Gillan M J and Holloway R W 1985 Rev. Mod. Phys. 18 4903
[12] Reichhardt C and Olson Reichhardt C J 2004 Phys. Rev. Lett. 92 108301
[13] Matsuda T, Harada K, Kasai H, Kamimura O and Tonomura A 1996 Science 1393 271
[14] Persson B N J 1999 Surf. Sci. Rep. 33 83
[15] Wang C L, Duan W S, Chen J M and Hong X R 2008 Appl. Phys. Lett. 93 153116
[16] Yang Y, Duan W S, Chen J M, Yang L, Teki? J, Shao Z G and Wang C L 2010 Phys. Rev. E 82 051119
[17] Jia R J, Wang C L, Yang Y, Gou x q, Chen J M and Duan W S 2013 Acta Phys. Sin. 62 6
[18] Yang Y, Wang C L, Duan W S, Shi Y R and Chen J M 2012 Acta Phys. Sin. 61 13
[19] Li X L, Liu F, Lin M M, Chen J M and Duan W S 2010 Acta Phys. Sin. 59 4
[20] Lin M M, Duan W S and Chen J M 2010 Chin. Phys. B 19 026201
[21] Nie L R, Yu L L, Zheng Z G and Shu C Z 2013 Phys. Rev. E 87 062142
[22] Wang L, Hu B and Li Bw 2012 Phys. Rev. E 86 040101
[23] Wang L, Hu B and Li B W 2012 Phys. Rev. E 85 061112
[24] Hu B and Yang L 2005 Chaos 15 015119
[25] Braun O M, Hu B and Zeltser A 2000 Phys. Rev. E 62 4235
[26] Braun O M, Zhang H, Hu B and Teki? J 2003 Phys. Rev. E 67 066602
[27] Toda M 1967 J. Phys. Soc. Jpn. 22 431
[28] Toda M 1967 J. Phys. Soc. Jpn. 23 501
[29] Toda M 1975 Phys. Rep. 18 1
[30] Toda M 1981 Theory of Nonlinear Lattices (Berlin: Springer-Verlag)
[31] Ilzuka T and Wadati 1992 J. Phys. Soc. Jpn. 61 3077
[32] Ilzuka T and Wadati 1992 J. Phys. Soc. Jpn. 61 4344
[33] Ilzuka T and Wadati 1993 J. Phys. Soc. Jpn. 62 1932
[34] Duan W S, Lv K P and Zhao J B 1994 Chin. J. Comput. Phys. 11 129
[35] Duan W S and Zhao J B 1990 J. Northwest Normal University 2 31
[36] Duan W S and Wang Y S 1993 J. Northwest Normal University 3 29
[37] D J Evans and G Morriss 1990 Statistical Mechanics of Nonequilibrium Liquids (London: Academic)
[38] Nose S 1984 J. Chem. Phys. 85 511
[39] Hoover W G 1985 Phys. Rev. A 31 1695
[1]
. [J]. 中国物理快报, 2023, 40(2): 20501-.
[2]
. [J]. 中国物理快报, 2022, 39(12): 120502-.
[3]
. [J]. 中国物理快报, 2017, 34(6): 68901-.
[4]
. [J]. 中国物理快报, 2017, 34(6): 68902-.
[5]
. [J]. 中国物理快报, 2016, 33(10): 100503-100503.
[6]
. [J]. 中国物理快报, 2015, 32(08): 88901-088901.
[7]
. [J]. 中国物理快报, 2014, 31(06): 60503-060503.
[8]
. [J]. 中国物理快报, 2014, 31(2): 20501-020501.
[9]
. [J]. Chin. Phys. Lett., 2012, 29(12): 128901-128901.
[10]
. [J]. 中国物理快报, 2012, 29(8): 80502-080502.
[11]
LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics [J]. 中国物理快报, 2012, 29(6): 60504-060504.
[12]
MEI Li-Jie,WU Xin**,LIU Fu-Yao. A New Class of Scaling Correction Methods [J]. 中国物理快报, 2012, 29(5): 50201-050201.
[13]
XIE Zheng, YI Dong-Yun** , OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents [J]. 中国物理快报, 2012, 29(3): 38902-038902.
[14]
YUAN Xiao-Ping;CHEN Jiang-Xing;ZHAO Ye-Hua**;LOU Qin;WANG Lu-Lu;SHEN Qian
. Spiral Wave Generation in a Vortex Electric Field [J]. 中国物理快报, 2011, 28(10): 100505-100505.
[15]
YUAN Xiao-Ping;ZHENG Zhi-Gang**
. Ground-State Transition in a Two-Dimensional Frenkel–Kontorova Model [J]. 中国物理快报, 2011, 28(10): 100507-100507.