Fabrication and Characterization of Fe-Doped In2 O3 Dilute Magnetic Semiconducting Nanowires
ZHANG Jun-Ran1 , WU Zhen-Yao1 , LIU Yu-Jie1 , LV Zhan-Peng1 , NIU Wei1 , WANG Xue-Feng1** , DU Jun2 , LIU Wen-Qing3 , ZHANG Rong1 , XU Yong-Bing1,3**
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 2100932 National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Department of Physics, Nanjing University, Nanjing 2100933 York-Nanjing International Center of Spintronics (YNICS), Department of Electronics, The University of York, YO10 3DD, United Kingdom
Abstract :Fe-doped In2 O3 dilute magnetic semiconducting nanowires are fabricated on Au-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy that Fe has been successfully doped into lattices of In2 O3 nanowires. The EDS measurements reveal a large amount of oxygen vacancies existing in the Fe-doped In2 O3 nanowires. The Fe dopant exists as a mixture of Fe2+ and Fe3+ , as revealed by the XPS. The origin of room-temperature ferromagnetism in Fe-doped In2 O3 nanowires is explained by the bound magnetic polaron model.
出版日期: 2015-02-26
:
75.10.-b
(General theory and models of magnetic ordering)
81.15.Gh
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
06.60.-c
(Laboratory procedures)
引用本文:
. [J]. 中国物理快报, 2015, 32(03): 37501-037501.
ZHANG Jun-Ran, WU Zhen-Yao, LIU Yu-Jie, LV Zhan-Peng, NIU Wei, WANG Xue-Feng, DU Jun, LIU Wen-Qing, ZHANG Rong, XU Yong-Bing. Fabrication and Characterization of Fe-Doped In2 O3 Dilute Magnetic Semiconducting Nanowires. Chin. Phys. Lett., 2015, 32(03): 37501-037501.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/32/3/037501
或
https://cpl.iphy.ac.cn/CN/Y2015/V32/I03/37501
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488 [2] Wang X F, Xu J B, Zhang B, Yu H G, Wang J, Zhang X, Yu J G and Li Q 2006 Adv. Mater. 18 2476 [3] Toyosaki H, Fukumura T, Yamada Y, Nakajima K, Chikyow T, Hasegawa T, Koinuma H and Kawasaki M 2004 Nat. Mater. 3 221 [4] Fitzgerald C, Venkatesan M, Dorneles L, Gunning R, Stamenov P, Coey J M D, Stampe P, Kennedy R, Moreira E and Sias U 2006 Phys. Rev. B 74 115307 [5] Shen Y, Turner S, Yang P, Van Tendeloo G, Lebedev O I and Wu T 2014 Nano Lett. 14 4342 [6] Onuma T, Fujioka S, Yamaguchi T, Higashiwaki M, Sasaki K, Masui T and Honda T 2013 Appl. Phys. Lett. 103 041910 [7] Mori S and Asano A 2010 J. Phys. Chem. C 114 13113 [8] Wang B, Zhou Z, Wu H Y and Zhu L F 2014 Nanoscale Res. Lett. 9 111 [9] Osiak M, Khunsin W, Armstrong E, Kennedy T, Torres C M, Ryan K M and O'Dwyer C 2013 Nanotechnology 24 065401 [10] Li C, Curreli M, Lin H, Lei B, Ishikawa F N, Datar R, Cote R J, Thompson M E and Zhou C W 2005 J. Am. Chem. Soc. 127 12484 [11] Zang W, Nie Y, Zhu D, Deng P, Xing L and Xue X 2014 J. Phys. Chem. C 118 9209 [12] Koida T, Shibata H, Kondo M, Tsutsumi K, Sakaguchi A, Suzuki M and Fujiwara H 2012 J. Appl. Phys. 111 063721 [13] Tseng W J, Tseng T T, Wu H M, Her Y C, Yang T J and Gouma P 2013 J. Am. Ceram. Soc. 96 719 [14] Yan S, Qiao W, Zhong W, Au C T and Dou Y 2014 Appl. Phys. Lett. 104 062404 [15] An Y, Yang D, Ma G, Zhu Y, Wang S, Wu Z and Liu J 2014 J. Phys. Chem. C 118 10448 [16] Hong N H, Sakai J, Huong N T and BrizéV 2005 Appl. Phys. Lett. 87 102505 [17] Xing G Z, Yi J B, Yan F, Wu T and Li S 2014 Appl. Phys. Lett. 104 202411 [18] An Y, Wang S, Duan L, Liu J and Wu Z 2013 Appl. Phys. Lett. 102 212411 [19] Philip J, Punnoose A, Kim B I, Reddy K M, Layne S, Holmes J O, Satpati B, Leclair P R, Santos T S and Moodera J S 2006 Nat. Mater. 5 298 [20] Gupta A, Cao H T, Parekh K and Rao K V 2007 J. Appl. Phys. 101 09N513 [21] Kim H, Osofsky M, Auyeung R C Y and PiquéA 2012 Appl. Phys. Lett. 100 142403 [22] Scherer V, Janowitz C, Krapf A, Dwelk H, Braun D and Manzke R 2012 Appl. Phys. Lett. 100 212108 [23] Nayak P K, Hedhili M N, Cha D and Alshareef H N 2013 Appl. Phys. Lett. 103 033518 [24] Lei F, Sun Y, Liu K, Gao S, Liang L, Pan B and Xie Y 2014 J. Am. Chem. Soc. 136 6826 [25] Shanmugasundaram A, Ramireddy B, Basak P, Manorama S V and Srinath S 2014 J. Phys. Chem. C 118 6909 [26] Yoo Y K, Xue Q, Lee H C, Cheng S, Xiang X D, Dionne G F, Xu S, He J, Chu Y S, Preite S D, Lofl S E and Takeuchi I 2005 Appl. Phys. Lett. 86 042506 [27] Feng Q, Blythe H J, Jiang F X, Xu X H, Heald S M, Fox A M and Gehring G A 2013 APL Mater. 1 022107 [28] Jahangir S, Dogan F, Kum H, Manchon A and Bhattacharya P 2012 Phys. Rev. B 86 035315 [29] Kum H, Heo J, Jahangir S, Banerjee A, Guo W and Bhattacharya P 2012 Appl. Phys. Lett. 100 182407 [30] Yu Z, He J, Xu S, Xue Q, van't Erve O, Jonker B, Marcus M, Yoo Y, Cheng S and Xiang X D 2006 Phys. Rev. B 74 165321 [31] Wang X F, Song F Q, Chen J, Wang T Y, Wang J L, Liu P, Shen M R Wan J G, Wang G H and Xu J B 2010 J. Am. Chem. Soc. 132 6492 [32] Zou C W, Wu H Z, Liang F, Xue S W and Shao L X 2014 Appl. Phys. Lett. 104 222105 [33] Farvid S S, Sabergharesou T, Hutfluss L N, Hegde M, Prouzet E and Radovanovic P V 2014 J. Am. Chem. Soc. 136 7669 [34] Wang X F, Wan B, Zhang K, Zhao B, Li Z, Wan X, Song F Q, Liu B, Xiu X Q, Xu Y B, Shi Y and Zhang R 2013 J. Phys. Chem. C 117 18258 [35] Wang X F, Zheng R K, Liu Z W, Ho H P, Xu J B and Ringer S P 2008 Nanotechnology 19 455702 [36] Koo B R, Park I K and Ahn H J 2014 J. Alloys Compd. 603 52 [37] Meng X Q and Li J B 2010 J. Phys. Chem. C 114 17569 [38] Yin W Y, Cao M H, Ni C Y, Cloutier S G, Huang Z G, Ma X, Ren L, Hu C W and Wei B Q 2009 J. Phys. Chem. C 113 19493 [39] Singhal S N A, Manjanna J, Jayakumar O D, Kadam R M and Tyagi A K 2009 J. Phys. Chem. C 113 3600 [40] Xing P F, Chen Y X, Yan S S, Liu G L, Mei L M and Zhang Z 2009 J. Appl. Phys. 106 043909 [41] Guan L, Tao J, Xiao Z, Zhao B, Fan X, Huan C, Kuo J and Wang L 2009 Phys. Rev. B 79 184412 [42] An Y, Wang S, Feng D, Wu Z and Liu J 2013 Appl. Surf. Sci. 276 535
[1]
. [J]. 中国物理快报, 2022, 39(6): 67501-.
[2]
. [J]. 中国物理快报, 2020, 37(1): 17101-.
[3]
. [J]. 中国物理快报, 2018, 35(1): 17501-.
[4]
. [J]. 中国物理快报, 2016, 33(07): 77501-077501.
[5]
. [J]. 中国物理快报, 2014, 31(2): 27402-027402.
[6]
. [J]. 中国物理快报, 2014, 31(1): 17101-017101.
[7]
Osman Murat Ozkendir**. Chromium Substitution Effect on the Magnetic Structure of Iron Oxides [J]. 中国物理快报, 2012, 29(5): 57502-057502.
[8]
LIU Zhao-Sen;Divis Martin;Sechovský Vladimir. Magnetic Orderings and Néel Temperature of TbNi2 B2 C [J]. 中国物理快报, 2009, 26(10): 107504-107504.
[9]
LI Guan-Nan;JIN Ying-Jiu. First-Principles Study on the Half-Metallicity of Half-Heusler Alloys: XYZ (X=Mn, Ni; Y=Cr, Mn; Z=As, Sb) [J]. 中国物理快报, 2009, 26(10): 107101-107101.
[10]
LIU Zhao-Sen;Divis Martin;Sechovsky Vladimir. The Magnetic Properties of TbNi2 B2 C Investigated with a Two-Sublattice Model [J]. 中国物理快报, 2009, 26(6): 67501-067501.
[11]
WANG Dan;XIONG Shi-Jie. Influence of Randomness and Localization on RKKY Interactions in Diluted Magnetic Semiconductors [J]. 中国物理快报, 2008, 25(3): 1102-1105.
[12]
LIU Zhao-Sen. Magnetism of Rare-Earth Compounds with Non-Magnetic Crystal-Field Ground Levels [J]. 中国物理快报, 2007, 24(1): 207-209.
[13]
LIU Hui-Ping;SUN Yun-Zhou;YI Lin. Heat Conductivity in a Two-Dimensional Finite-Size Spin System with Dzyaloshinskii--Moriya Interactions [J]. 中国物理快报, 2006, 23(7): 1713-1715.
[14]
WANG Wei-Hua;ZOU Liang-Jian. Electronic States and Spatial Charge Distribution of Single Mn Impurity in Diluted Magnetic Semiconductors [J]. 中国物理快报, 2006, 23(6): 1588-1591.
[15]
LIU Qin-Yong;TIAN Guang-Shan;YAN Xin-Zhong. Antiferromagnetic Phase Transition in the Quasi-Two-Dimensional Hubbard Model at Half Filling [J]. 中国物理快报, 2004, 21(5): 937-940.