Abstract:The time-dependent Jones–Wilkins–Lee equation of state (JWL-EOS) is applied to describe detonation state products for aluminized explosives. To obtain the time-dependent JWL-EOS parameters, cylinder tests and underwater explosion experiments are performed. According to the result of the wall radial velocity in cylinder tests and the shock wave pressures in underwater explosion experiments, the time-dependent JWL-EOS parameters are determined by iterating these variables in AUTODYN hydrocode simulations until the experimental values are reproduced. In addition, to verify the reliability of the derived JWL-EOS parameters, the aluminized explosive experiment is conducted in concrete. The shock wave pressures in the affected concrete bodies are measured by using manganin pressure sensors, and the rod velocity is obtained by using a high-speed camera. Simultaneously, the shock wave pressure and the rod velocity are calculated by using the derived time-dependent JWL equation of state. The calculated results are in good agreement with the experimental data.
. [J]. 中国物理快报, 2015, 32(01): 16401-016401.
ZHOU Zheng-Qing, NIE Jian-Xin, GUO Xue-Yong, WANG Qiu-Shi, OU Zhuo-Cheng, JIAO Qing-Jie. A New Method for Determining the Equation of State of Aluminized Explosive. Chin. Phys. Lett., 2015, 32(01): 16401-016401.
[1] Zukas J A and Walters W 2002 Explosive Effects and Applications (New York: Springer) p 82 [2] Fickett W and Davis W C 1979 Detonation (Berkeley: University of California Press) p 68 [3] Cheret R 1993 Detonation of Condensed Explosives (New York: Springer) [4] Cowan R D and Fickett W 1956 J. Chem. Phys.24 932 [5] Kury J W et al 1965 The 4th Symposium (Intern.) Detonation (Maryland 12–15 October 1965) p 3 [6] Urtiew P A and Hayes B 1991 Combust. Explos. Shock Waves27 505 [7] Ficket W and Davis W C 1963 Phys. Fluids6 997 [8] Zhao Y H et al 2007 Acta Phys. Sin.56 4791 (in Chinese) [9] Jacobs S J 1969 The 12th Symposium (Intern.) Combustion (Poitiers 14–20 July 1968) p 501 [10] Cowperthwaite M and Zwisler W H 1976 The 6th Symposium (Intern.) Detonation (California 24–27 August 1976) p 162 [11] Chirat R and Pittion R G 1981 J. Chem. Phys.74 4634 [12] Wen H H et al 2012 Chin. Phys. Lett.29 108201 [13] Wang C et al 2009 Mod. Phys. Lett. B 23 285 [14] Zhou H Q et al 2014 Acta Phys. Sin.63 224702 (in Chinese) [15] Peng W et al 2006 Chin. Phys. Lett.23 1652 [16] Vadhe P P et al 2008 Combust. Explos. Shock Waves44 461 [17] Mader C L 1979 Numerical Modeling of Detonations (Berkeley: University of California Press) [18] Guirguis R H and Miller P J 1993 The 10th Symposium (Intern.) Detonation (Boston 12–16 July 1993) p 33395 [19] Guirguis R H 1995 Proceedings of the 1994 JANNAF PSHS p 383 [20] Miller P J 1995 MRS Proceedings p 418 [21] Hornberg H and Volk F 1989 Propell.Explos. Pyrotech.14 199 [22] Lindsay C M et al 2010 Propell.Explos. Pyrotech.35 433 [23] Peterson J R and Wight C A 2012 Combust. Flame159 2491 [24] Fluckiger R 1987 ISPE10 270 [25] Keshavarz M H 2009 J. Hazard. Mater.166 1296 [26] Keshavarz M H et al 2006 J. Hazard. Mater.137 83 [27] Wescott B L et al 2005 J. Appl. Phys.98 053514 [28] Zhang Q et al 2013 Sci. Chin. Phys. Mech.56 1004 [29] Guirguis R et al 1998 The 10th American Physical Society Topical Conference on Shock Compression of Condensed Matter (Amherst July–1 August 1997) p 871 [30] Miller P J and Guirguis R H 1992 MRS Proceedings p 299 [31] Hamashima H et al 2004 The 13th American Physical Society Topical Conference on Shock Compression of Condensed Matter (Portland 20–25 July 2003) p 331 [32] Lee E L and Tarver C M 1980 Phys. Fluids23 2362 [33] Tarver C M et al 1997 J. Appl. Phys.81 7193 [34] Zhou Z Q et al 2014 J. Appl. Phys.116 144906 [35] Johnson G R and Cook W H 1983 The 7th Symposium (Intern.) on Ballistics (Hague 19–21 April 1983) p 541 [36] Riedel W et al 2009 Int. J. Impact Eng.36 283