Effects of Doping on the Magnetic Properties and Frustration of Hexagonal YMn0.9A0.1O3 (A=Al, Fe, and Cu)
XIAO Li-Xia1,2, JIN Zhao3, XIA Zheng-Cai1**, SHI Li-Ran3, HUANG Jun-Wei3, CHEN Bo-Rong3, SHANG Cui3, WEI Meng3, LONG Zhuo3
1Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 2WenHua College, Wuhan 430074 3School of Physics, Huazhong University of Science and Technology, Wuhan 430074
Abstract:The doping effects on the frustration and the magnetic properties in hexagonal compounds of YMn0.9A0.1O3 (A=Al, Fe and Cu) are investigated. Experimental results indicate that both the non-magnetic and magnetic ion dopants lead to the increase of magnetic moments and the decrease of the absolute value of Curie–Weiss temperature (|θCW|). Compared with pure YMnO3, the geometrical frustration of YMn0.9A0.1O3 is greatly suppressed and the magnetic coupling in that exhibits dopant-dependent. In addition, for the doped YMn0.9A0.1O3, the antiferromagnetic transition temperature (TN) is also suppressed slightly, which shows an abnormal dilution effect and it may be ascribed to the reduction of frustration due to the chemical substitution.
(Magnetization curves, hysteresis, Barkhausen and related effects)
引用本文:
. [J]. 中国物理快报, 2015, 32(01): 17501-017501.
XIAO Li-Xia, JIN Zhao, XIA Zheng-Cai, SHI Li-Ran, HUANG Jun-Wei, CHEN Bo-Rong, SHANG Cui, WEI Meng, LONG Zhuo. Effects of Doping on the Magnetic Properties and Frustration of Hexagonal YMn0.9A0.1O3 (A=Al, Fe, and Cu). Chin. Phys. Lett., 2015, 32(01): 17501-017501.
[1] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature426 55 [2] Matsumoto T, Ishikawa R, Tohei T, Kimura H, Yao Q, Zhao H Y, Wang X L, Chen D P, Cheng Z X, Shibata N and Ikuhara Y 2013 Nano Lett.13 4594 [3] Varignon J, Petit S, Gelle A and Lepetit M B 2013 J. Phys.: Condens. Matter25 496004 [4] Liu Y F, Wang B, Zheng H W, Liu X Y, Gu Y Z and Zhang W F 2010 Chin. Phys. Lett.27 056801 [5] Gilleo M A 1957 Acta Crystallogr.10 161 [6] Ismailzade I G 1965 Sov. Phys. Solid State7 236 [7] Katsufuji T, Masaki M, Machida A, Moritomo M, Kato K, Nishibori E, Takata M, Sakata M, Ohoyama K, Kitazawa K and Takagi H 2002 Phys. Rev. B 66 134434 [8] Ramirez A P 2001 Handbook Magn. Mater. 13 [9] Millis A J 2003 Solid State Commun.126 3 [10] Mori S, Tokunaga J, Horibe Y, Aikawa Y and Katsufuji T 2005 Phys. Rev. B 72 224434 [11] Park J, Lee S, Kang M, Jang K H, Lee C, Streltsov S V, Mazurenko V V, Valentyuk M V, Medvedeva J E, Kamiyama T and Park J G 2010 Phys. Rev. B 82 054428 [12] Helton J S, Singh D K, Nair H S and Elizabeth S 2011 Phys. Rev. B 84 064434 [13] Li H N, Huang J W, Xiao L X, Peng L P, Wu Y Y, Du G H, Ouyang Z W, Chen B R and Xia Z C 2012 J. Appl. Phys.111 083913 [14] Rai R, Coondoo I, Valente M A and Kholkin A L 2013 Adv. Mater. Lett.4 354 [15] Tian W, Tan G T, Liu L, Zhang J X, Winn B, Hong T, Fernandez-Baca J A, Zhang C L and Dai P C 2014 Phys. Rev. B 89 144417 [16] Nugroho A A, Bellido N, Adem U, Nénert G, Simon Ch, Tjia M O, Mostovoy M and Palstra T T M 2007 Phys. Rev. B 75 174435 [17] Jeuvrey L, Peria O, Moure A and Moure C 2012 J. Magn. Magn. Mater.324 717 [18] Samal S L, Green W, Lofland S E, Ramanujachary K V, Das D and Ganguli A K 2008 J. Solid State Chem.181 61 [19] Park J, Kang M, Kim J, Lee S, Jang K H, Pirogov A and Park J G 2009 Phys. Rev. B 79 064417 [20] Zhang A M, Zhou G T, Zheng L and Wu X S 2014 J. Appl. Phys.115 133907 [21] Yoo Y J, Lee Y P, Park J S, Kang J H, Kim J, Lee B W and Seo M S 2012 J. Appl. Phys.112 013903