Fermionic One-Way Quantum Computation
CAO Xin1,2 , SHANG Yun1,2**
1 Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190
2 National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100190
Abstract :Fermions, as another major class of quantum particles, could be taken as carriers for quantum information processing beyond spins or bosons. In this work, we consider the fermionic generalization of the one-way quantum computation model and find that one-way quantum computation can also be simulated with fermions. In detail, using the n→ 2n encoding scheme from a spin system to a fermion system, we introduce the fermionic cluster state, then the universal computing power with a fermionic cluster state is demonstrated explicitly. Furthermore, we show that the fermionic cluster state can be created only by measurements on at most four modes with |+>f (fermionic Bell state) being free.
出版日期: 2014-11-28
:
03.67.Hk
(Quantum communication)
03.67.Lx
(Quantum computation architectures and implementations)
03.67.Ac
(Quantum algorithms, protocols, and simulations)
[1] Raussendorf R 2003 Ph. D. Dissertation (Munich: Ludwig Maximilians University)
[2] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[3] Raussendorf R and Briegel H J 2002 Quantum Inf. Comput. 2 443
[4] Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312
[5] Kwek L C, Wei Z and Zeng B 2012 Int. J. Mod. Phys. B 26 1230002
[6] Brennen G K and Miyake A 2008 Phys. Rev. Lett. 101 010502
[7] Cai J, Miyake A, Dür W and Briegel H J 2010 Phys. Rev. A 82 052309
[8] Akimasa and Miyake 2011 Ann. Phys. 326 1656
[9] Chen X, Zeng B, Gu Z C, Yoshida B and Chuang I L 2009 Phys. Rev. Lett. 102 220501
[10] Wei T C, Affleck I and Raussendorf R 2011 Phys. Rev. Lett. 106 070501
[11] Liu J et al 2014 Chin. Phys. B 23 020213
[12] Sun X M, Zha X W and Qi J X 2013 Acta Phys. Sin. 62 230302 (in Chinese)
[13] Diao D S 2013 Chin. Phys. Lett. 30 010303
[14] Bloch I 2008 Nature 453 1016
[15] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45
[16] Tokunaga Y, Kuwashiro S, Yamamoto T, Koashi M and Imoto N 2008 Phys. Rev. Lett. 100 210501
[17] Lanyon B P, Jurcevic P, Zwerger M, Hempel C, Martinez E A, Dür W, Briegel H J, Blatt R and Roos C F 2013 Phys. Rev. Lett. 111 210501
[18] Chiu Y J, Chen X and Chuang I L 2013 Phys. Rev. A 87 012305
[19] Bravyi S B and Kitaev A Y 2002 Ann. Phys. 298 210
[20] Kraus C V, Schuch N, Verstraete F and Cirac J I 2010 Phys. Rev. A 81 052338
[21] Gu Z C, Verstraete F and Wen X G 2010 arXiv:1004.2563
[22] Gross D and Eisert J 2007 Phys. Rev. Lett. 98 220503
[23] Gross D, Eisert J, Schuch N and Perez-Garcia D 2007 Phys. Rev. A 76 052315
[24] Gross D 2008 Ph. D. Dissertation (London: Imperial College London)
[25] Van den Nest M, Miyake A, Dür W and Briegel H J 2006 Phys. Rev. Lett. 97 150504
[26] Van den Nest M, Dür W, Vidal G and Briegel H J 2007 Phys. Rev. A 75 012337
[27] Zhou X, Leung D W and Chuang I L 2000 Phys. Rev. A 62 052316
[28] Feder D L 2012 Phys. Rev. A 85 012312
[29] Nielsen M A 2006 Rep. Math. Phys. 57 147
[30] Raussendorf R and Wei T C 2012 Annu. Rev. Condens. Matter Phys. 3 239
[31] Perdrix S 2005 Int. J. Quantum Inf. 3 219
[32] Perdrix S 2007 New J. Phys. 9 206
[33] Jorrand Ph and Perdrix S 2005 Quantum Informatics Proc. SPIE 5833 44
[1]
. [J]. 中国物理快报, 2022, 39(11): 110301-.
[2]
. [J]. 中国物理快报, 2022, 39(7): 70301-070301.
[3]
. [J]. 中国物理快报, 2022, 39(7): 70303-.
[4]
. [J]. 中国物理快报, 2021, 38(9): 90301-.
[5]
. [J]. 中国物理快报, 2021, 38(9): 94202-094202.
[6]
. [J]. 中国物理快报, 2021, 38(8): 80301-.
[7]
. [J]. 中国物理快报, 2021, 38(4): 40301-.
[8]
. [J]. 中国物理快报, 2020, 37(11): 110302-.
[9]
. [J]. 中国物理快报, 2020, 37(5): 50302-.
[10]
. [J]. 中国物理快报, 2019, 36(10): 100302-.
[11]
. [J]. 中国物理快报, 2019, 36(9): 90301-.
[12]
. [J]. 中国物理快报, 2019, 36(7): 70301-.
[13]
. [J]. 中国物理快报, 2019, 36(4): 40301-.
[14]
. [J]. 中国物理快报, 2019, 36(3): 30301-.
[15]
. [J]. 中国物理快报, 2018, 35(9): 90302-.