Placement Scheme of Numerous Laser Beams in the Context of Fiber-Based Laser Fusion
XU Teng, XU Li-Xin** , WANG An-Ting, GU Chun, WANG Sheng-Bo, LIU Jing, WEI An-Kun
Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026
Abstract :A simple scheme based on the uniform distribution for the placement of numerous laser beams in the context of fiber-based laser fusion is proposed. It is theoretically demonstrated that all modes of the geometrical factor can be eliminated if sufficient laser beams are uniformly distributed on the sphere. In the case of a finite number of laser beams, a quasi-uniform distribution of beams can be achieved based on the equal area subdivision algorithm. Numerical simulations indicate that with the increasing number of laser beams, the order of the dominant geometrical mode increases, and the irradiation nonuniformity decreases accordingly.
出版日期: 2014-08-22
:
52.57.Fg
(Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))
42.55.Wd
(Fiber lasers)
42.60.By
(Design of specific laser systems)
引用本文:
. [J]. 中国物理快报, 2014, 31(09): 95201-095201.
XU Teng, XU Li-Xin, WANG An-Ting, GU Chun, WANG Sheng-Bo, LIU Jing, WEI An-Kun. Placement Scheme of Numerous Laser Beams in the Context of Fiber-Based Laser Fusion. Chin. Phys. Lett., 2014, 31(09): 95201-095201.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/31/9/095201
或
https://cpl.iphy.ac.cn/CN/Y2014/V31/I09/95201
[1] Temporal M and Canaud B 2011 Eur. Phys. J. D 65 447 [2] Temporal M and Canaud B 2009 Eur. Phys. J. D 55 139 [3] Temporal M, Canaud B, Garbett W, Philippe F and Ramis R 2013 Eur. Phys. J. D 67 1 [4] Ramis R, Temporal M, Canaud B and Brandon V 2013 EPJ. Web Conf. 59 02017 [5] Temporal M, Canaud B, Garbett W J and Ramis R 2014 Phys. Plasmas 21 012710 [6] Bodner S 1981 J. Fusion Energ. 1 221 [7] Wang L F, Ye W H and Li Y J 2010 Chin. Phys. Lett. 27 025203 [8] Ye W H, Wang L F and He X T 2010 Chin. Phys. Lett. 27 125203 [9] Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S and Soures J M 1989 J. Appl. Phys. 66 3456 [10] Tsubakimoto K, Yamanaka C, Miyanaga N, Nakatsuka M, Jitsuno T and Nakai S 1996 AIP Conf. Proc. 369 975 [11] Murakami M 1995 Appl. Phys. Lett. 66 1587 [12] Xiao J and Lu B D 1998 J. Opt. 29 282 [13] Sergey G G, Vladimir N D and Roman A S 2004 Quantum Electron. 34 427 [14] Labaune C, Hulin D, Galvanauskas A and Mourou G A 2008 Opt. Commun. 281 4075 [15] Mourou G A, Labaune C, Hulin D and Galvanauskas A 2008 J. Phys.: Conf. Ser. 112 032052 [16] Kidder R E 1976 Nucl. Fusion 16 3 [17] Skupsky S and Lee K 1983 J. Appl. Phys. 54 3662 [18] Kuipers L and Niederreiter H 1974 Uniform Distribution of Sequences (Wiley: New York) [19] Song L, Kimerling A J and Sahr K 2002 Developing an Equal Area Global Grid by Small Circle Subdivision (Santa Barbara: National Center for Geographic Information & Analysis)
[1]
. [J]. 中国物理快报, 2020, 37(7): 75201-.
[2]
. [J]. 中国物理快报, 2020, 37(5): 55201-.
[3]
. [J]. 中国物理快报, 2020, 37(2): 25201-.
[4]
. [J]. 中国物理快报, 2020, 37(1): 15201-.
[5]
. [J]. 中国物理快报, 2019, 36(2): 25201-.
[6]
. [J]. 中国物理快报, 2018, 35(5): 55201-.
[7]
. [J]. 中国物理快报, 2017, 34(7): 75201-.
[8]
. [J]. 中国物理快报, 2017, 34(4): 45201-045201.
[9]
. [J]. 中国物理快报, 2014, 31(04): 44702-044702.
[10]
. [J]. 中国物理快报, 2014, 31(04): 45201-045201.
[11]
YE Wen-Hua;**;WANG Li-Feng;;HE Xian-Tu;
. Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability [J]. 中国物理快报, 2010, 27(12): 125203-125203.
[12]
WANG Li-Feng;YE Wen-Hua;;LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers [J]. 中国物理快报, 2010, 27(2): 25203-025203.
[13]
WANG Li-Feng;YE Wen-Hua;;LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability [J]. 中国物理快报, 2010, 27(2): 25202-025202.
[14]
WANG Li-Feng;YE Wen-Hua;;FAN Zheng-Feng;XUE Chuang;LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids [J]. 中国物理快报, 2009, 26(7): 74704-074704.