Extraction of Channel Length Independent Series Resistance for Deeply Scaled Metal-Oxide-Semiconductor Field-Effect Transistors
MA Li-Juan1 , JI Xiao-Li1** , CHEN Yuan-Cong1 , XIA Hao-Guang1 , ZHU Chen-Xin1 , GUO Qiang2 , YAN Feng1**
1 School of Electronic Science and Engineering, Nanjing University, Nanjing 2100932 Wuhan Xinxin Semiconductor Manufacturing Corporation, Wuhan 430205
Abstract :The recently developed four Rsd extraction methods from a single device, involving the constant-mobility method, the direct Id –Vgs method, the conductance method and the Y-function method, are evaluated on 32 nm n-channel metal-oxide-semiconductor field-effect transistors (nMOSFETs). It is found that Rsd achieved from the constant-mobility method exhibits the channel length independent characteristics. The L -dependent Rsd extracted from the other three methods is proven to be associated with the gate-voltage-induced mobility degradation in the extraction procedures. Based on L -dependent behaviors of Rsd , a new method is proposed for accurate series resistance extraction on deeply scaled MOSFETs.
出版日期: 2014-08-22
:
73.40.Qv
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
85.30.Tv
(Field effect devices)
引用本文:
. [J]. 中国物理快报, 2014, 31(09): 97302-097302.
MA Li-Juan, JI Xiao-Li, CHEN Yuan-Cong, XIA Hao-Guang, ZHU Chen-Xin, GUO Qiang, YAN Feng. Extraction of Channel Length Independent Series Resistance for Deeply Scaled Metal-Oxide-Semiconductor Field-Effect Transistors. Chin. Phys. Lett., 2014, 31(09): 97302-097302.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/31/9/097302
或
https://cpl.iphy.ac.cn/CN/Y2014/V31/I09/97302
[1] Terada K and Muta H 1979 Jpn. J. Appl. Phys. 18 953 [2] Li B, Liu H X, Yuan B, Li J and Lu F M 2011 Acta Phys. Sin. 60 017202 (in Chinese) [3] Zhu S Y and Li M F 2005 Chin. Phys. Lett. 22 2020 [4] Chang Y H, Wu Y F and Ho C S 2007 Electron. Devices Solid-State Circuits 87 [5] Fleury D, Cros A, Bidal G, Rosa J and Ghibaudo G 2009 IEEE Electron Device Lett. 30 975 [6] Adelmo O C, García Sánchez F J et al 2009 Microelectron. Reliab. 49 689 [7] Muci J, Mu?oz D C L, Latorre Rey á D et al 2009 Semicond. Sci. Technol. 24 105015 [8] Fleury D, Cros A, Brut H and Ghibaudo G 2008 IEEE International Conference on Microelectronic Test Structures (University of Edinburgh, Edinburgh 24–27 Mar 2008) p 160 [9] Luca S, Enrico S and Bruno R 1989 IEEE Trans. Electron Devices 36 1094 [10] Po-Nien C W, Su P, Ken-Ichi G and Carlos H D 2009 J. Electrochem. Soc. 156 H34 [11] Lin D W, Cheng M L, Wang S W, Wu C C and Chen M J 2007 IEEE Electron Device Lett. 28 1132 [12] Campbell J P, Cheung K P, Suehle J S and Oates A 2011 IEEE Electron Device Lett. 32 1047 [13] Campbell J P, Cheung K P, Drozdov S A, Southwick R G, Ryan J T, Oates A S and Suehle J S 2012 IEEE International Conference on Silicon Nanoelectronics Workshop (Honolulu USA 10–11 June 2012) p 147 [14] Reychaudhuri A, Deen M J, King M I H and kolk J 1996 Solid-State Electron. 39 909 [15] Baek R H, Baek C K, Jung S W, Yeoh Y Y, Kim D W, Lee J S, Kim D M and Jeong Y H 2010 IEEE Trans. Nanotechnol. 9 212 [16] Chang J G, Ji X L, Ma L J, Liao Y M, Yan F, Guo Q and Zhang R 2013 Semicond. Sci. Technol. 28 115009 [17] Wolf S 1995 Lattice Press (American: California) vol 3 chap 5 p 250 [18] He J, Zhang X, Wang Y and Huang R 2001 IEEE Electron Device Lett. 22 597
[1]
. [J]. 中国物理快报, 2020, 37(7): 77302-.
[2]
. [J]. 中国物理快报, 2019, 36(6): 67301-.
[3]
. [J]. 中国物理快报, 2018, 35(9): 98502-.
[4]
. [J]. 中国物理快报, 2018, 35(7): 77302-.
[5]
. [J]. 中国物理快报, 2018, 35(5): 57302-.
[6]
. [J]. 中国物理快报, 2018, 35(4): 46102-.
[7]
. [J]. 中国物理快报, 2018, 35(4): 48502-.
[8]
. [J]. 中国物理快报, 2018, 35(2): 27302-.
[9]
. [J]. 中国物理快报, 2017, 34(9): 97304-.
[10]
. [J]. 中国物理快报, 2017, 34(5): 57301-.
[11]
. [J]. 中国物理快报, 2017, 34(4): 47303-047303.
[12]
. [J]. 中国物理快报, 2017, 34(1): 18501-018501.
[13]
. [J]. 中国物理快报, 2016, 33(09): 97101-097101.
[14]
. [J]. 中国物理快报, 2016, 33(07): 76102-076102.
[15]
. [J]. 中国物理快报, 2016, 33(03): 38502-038502.