Anode and Cathode Spots in High-Voltage Nanosecond-Pulse Discharge Initiated by Runaway Electrons in Air
SHAO Tao1,2**, Victor F. Tarasenko3,4, YANG Wen-jin1,2, Dmitry V. Beloplotov3,4, ZHANG Cheng1,2, Mikhail I. Lomaev3,4, YAN Ping1,2, Dmitry A. Sorokin3
1Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 2Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 3Institute of High Current Electronics, Russian Academy of Sciences, Tomsk 634055, Russia 4National Research Tomsk State University, Tomsk 634055, Russia
Abstract:We report the experimental results with nanosecond-pulse discharges formed in the air gap between a flat electrode and a sharp electrode. The appearance of anode and cathode spots on the electrodes is studied experimentally. It is considered that bright spots on the flat cathode with positive polarity of the sharp electrode are formed due to the explosive electron emission on the cathode and the dynamic displacement current in the gap. It is also shown that with negative polarity of the sharp electrode, bright spots on the flat anode are formed after changing the polarity of the flat electrode due to the discharge oscillatory mode. Under these conditions, the explosive electron emission firstly forms on the sharp cathode. With negative polarity of the sharp electrode of the subnanosecond-pulse pulser, the runaway electron beam current is measured behind the anode foil with a time resolution of no more than 100 ps.
. [J]. 中国物理快报, 2014, 31(08): 85201-085201.
SHAO Tao, Victor F. Tarasenko, YANG Wen-jin, Dmitry V. Beloplotov, ZHANG Cheng, Mikhail I. Lomaev, YAN Ping, Dmitry A. Sorokin. Anode and Cathode Spots in High-Voltage Nanosecond-Pulse Discharge Initiated by Runaway Electrons in Air. Chin. Phys. Lett., 2014, 31(08): 85201-085201.
[1] Endo I and Walter R F 2007 Gas Lasers (New York: CRC Press) [2] Palmer A I 1974 Appl. Phys. Lett.25 138 [3] Korolev Y I and Mesyats G A 1982 Autoemission and Explosion Processes in Gas Discharges (Novosibirsk: Nauka) [4] Tarasova L V, Khudyakova L N, Loiko T V and Tsukerman V A 1974 Sov. Tech. Phys.19 564 [5] Kostyrya I D and Tarasenko V F 2004 Russ. Phys. J.47 1314 [6] Tarasenko V F 2006 Appl. Phys. Lett.88 081501 [7] Baksht E Kh, Burachenko A G, Kostyrya I D, Lomaev M I, Rybka D V, Shulepov M A and Tarasenko V F 2009 J. Phys. D: Appl. Phys.42 185201 [8] Shao T, Zhang C, Niu Z, Yan P, Tarasenko V F, Baksht E Kh, Burahenko A G and Shutko V 2011 Appl. Phys. Lett.98 021503 [9] Yatom S, Vekselman V and Krasik Ya E 2012 Phys. Plasmas19 123507 [10] Shao T, Tarasenko V F, Zhang C, Lomaev M I, Sorokin D A, Yan P, Kozyrev A V and Baksht E Kh 2012 J. Appl. Phys.111 023304 [11] Shao T, Tarasenko V F, Zhang C, Kostyrya I D, Jiang H, Xu R, Rybka D V and Yan P 2011 Appl. Phys. Express4 066001 [12] Stankevich Y L and Kalinin V G 1967 Dokl. Akad. Nauk SSSR.177 72 [13] Tarasenko V F and Yakovlenko S I 2004 Phys. Usp.47 887 [14] Babich L P and Loiko T V 2010 Plasma Phys. Rep.36 263 [15] Yatom S, Gleizer J Z, Levko D, Vekselman V, Gurovich V, Hupf E, Hadas Y and Krasik Ya E 2011 Europhys. Lett.96 65001 [16] Yatom S, Tskhai S and Krasik Ya E 2013 Phys. Rev. Lett.111 255001 [17] Shao T, Tarasenko V F, Zhang C, Baksht E Kh, Zhang D, Erofeev M V, Ren C, Shutko Y V and Yan P 2013 J. Appl. Phys.113 093301 [18] Zhang C, Ma H, Shao T, Xie Q, Yang W and Yan P 2014 Acta Phys. Sin.63 085208 (in Chinese) [19] Fursey G 2005 Field Emission in Vacuum Microelectronics (New York: Plenum Publishers) [20] Mesyats G A 1998 Explosive Electron Emission (Ekaterinburg: URO) [21] Shao T, Tarasenko V F, Zhang C, Burachenko A G, Rybka D V, Kostyrya I D, Lomaev M I, Baksht E Kh and Yan P 2013 Rev. Sci. Instrum.84 053506 [22] Muller E W, Panitz J A and McLane S B 1968 Rev. Sci. Instrum.39 83