Passive Phase Locking of Three Nanosecond Fiber Amplifiers Using a Dammann Grating Spatial Filter
YANG Yi-Feng1,2, ZHENG Ye1,2, HE Bing1**, ZHOU Jun1**, LIU Hou-Kang1,2, HU Man1,2, WEI Yun-Rong1, LOU Qi-Hong1
1Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 2University of Chinese Academy of Sciences, Beijing 100049
Abstract:A passive coherent beam combination of three nanosecond Yb-doped fiber amplifiers by an all-optical feedback loop is realized by a Dammann grating intracavity spatial filter. By using this diffractive-optics-based spatial filtering technique, three tile-aperture laser beams are phase-locked with a peak power of 1.02 kW. The width of the combined pulses is 9.6 ns, and the repetition frequency is 2.208 MHz. The visibility of the far-field interference pattern is up to 82.9%. The results show that this approach can scale to larger arrays and higher powers.
. [J]. 中国物理快报, 2014, 31(08): 84206-084206.
YANG Yi-Feng, ZHENG Ye, HE Bing, ZHOU Jun, LIU Hou-Kang, HU Man, WEI Yun-Rong, LOU Qi-Hong. Passive Phase Locking of Three Nanosecond Fiber Amplifiers Using a Dammann Grating Spatial Filter. Chin. Phys. Lett., 2014, 31(08): 84206-084206.
[1] Richardson D J, Nilsson J and Clarkson W A 2010 J. Opt. Soc. Am. B 27 63 [2] Zhou P, Liu Z J, Wang X L, Ma Y X, Ma H T and Xu X J 2009 Appl. Phys. Lett.94 231106 [3] Xue Y H, He B, Zhou J, Li Z, Fan Y Y, Qi Y F, Liu C, Yuan Z J, Zhang H B and Lou Q H 2011 Chin. Phys. Lett.28 054212 [4] Ma Y X, Wang X L, Leng J Y, Xiao H, Dong X L, Zhu J J, Du W B, Zhou P, Xu X J, Si L, Liu Z J and Zhao Y J 2011 Opt. Lett.36 951 [5] Liu H K, Xue Y H, Li Z, He B, Zhou J, Ding Y Q, Jiao M L, Liu C, Qi Y F, Wei Y R, Dong J X and Lou Q H 2012 Chin. Phys. Lett.29 044204 [6] Shay T M, Benham V, Baker J T, Ward B, Sanchez A D, Culpepper M A, Pilkington D, Spring J, Nelson D J and Lu C A 2006 Opt. Express14 12015 [7] Seise E, Klenke A, Breitkoph S, Limpert J and Tunnermann A 2011 Opt. Lett.36 3858 [8] Seise E, Klenke A, Breitkoph S, Plotner M, Limpert J and Tunnermann A 2011 Opt. Lett.36 439 [9] Daniault L, Hanna M, Lombard L, Zaouter Y, Mottay E, Goular D, Bourdon P, Druon F and Georges P 2011 Opt. Lett.36 621 [10] Daniault L, Hanna M, Lombard L, Zaouter Y, Mottay E, Goular D, Bourdon P, Druon F and Georges P 2012 Opt. Lett.37 650 [11] Su R T, Zhou P, Wang X L, Ma Y X and Xu X J 2012 Opt. Lett.37 497 [12] Su R T, Zhou P, Wang X L, Zhang H W and Xu X J 2012 Opt. Lett.37 3978 [13] Lhermite J, Desfarges-Berthelemot A, Kermene V and Barthelemy A 2007 Opt. Lett.32 1842 [14] Guillot J, Desfarges-Berthelemot A, Kermene V and Barthelemy A 2011 Opt. Lett.36 2907 [15] Liu H K, He B, Zhou J, Dong J X, Wei Y R and Lou Q H 2012 Opt. Lett.37 3885 [16] Bochove E J and Shakir S A 2009 IEEE J. Sel. Top. Quantum Electron.15 320 [17] Cheung E C, Ho J G, Goodno G D, Rice R R, Rothenberg J, Thielen P, Weber M and Wickham M 2008 Opt. Lett.33 354 [18] Goodno G D, McNaught S J, Rothenberg J E, McComb T S, Thielen P A, Wickham M G and Weber M E 2010 Opt. Lett.35 1542 [19] Thielen P A, Ho J G, Burchman D A, Goodno G D, Rothenberg J E, Wickham M G, Flores A, Lu C A, Pulford B, Robin C, Sanchez A D, Hult D and Rowland K B 2012 Opt. Lett.37 3741 [20] Redmond S M, Ripin D J, Yu C X, Augst S J, Fan T Y, Thielen P A, Rothenberg J E and Goodno G D 2012 Opt. Lett.37 2832 [21] Zhou C H and Liu L R 1995 Appl. Opt.34 5961 [22] Fan T Y 2005 IEEE J. Sel. Top. Quantum Electron.11 567 [23] Morel J, Woodtli A and Dandliker R 1993 Opt. Lett.18 1520 [24] Leger J R, Swanson G J and Veldkamp W B 1987 Appl. Opt.26 4391 [25] Yang Y F, Liu H K, Zheng Y, Hu M, Liu C, Qi Y F, He B, Zhou J, Wei Y R and Lou Q H 2014 Opt. Lett.39 708 [26] Shakir S A, Culver B, Nelson B, Starcher Y, Bates G M and Hedrick J W Jr 2008 Proc. SPIE7070 70700O [27] Yang Y F, Hu M, He B, Zhou J, Liu H K, Dai S J, Wei Y R and Lou Q H 2013 Opt. Lett.38 854