Abstract:We fabricate two Ni/Au-In0.17Al0.83N/AlN/GaN Schottky diodes on substrates of sapphire and Si, respectively, and investigate their forward-bias current transport mechanisms by temperature-dependent current-voltage measurements. In the temperature range of 300–485 K, the Schottky barrier heights (SBHs) calculated by using the conventional thermionic-emission (TE) model are strongly positively dependent on temperature, which is in contrast to the negative-temperature-dependent characteristic of traditional semiconductor Schottky diodes. By fitting the forward-bias I–V characteristics using different current transport models, we find that the tunneling current model can describe generally the I–V behaviors in the entire measured range of temperature. Under the high forward bias, the traditional TE mechanism also gives a good fit to the measured I–V data, and the actual barrier heights calculated according to the fitting TE curve are 1.434 and 1.413 eV at 300 K for InAlN/AlN/GaN Schottky diodes on Si and the sapphire substrate, respectively, and the barrier height shows a slightly negative temperature coefficient. In addition, a formula is given to estimate SBHs of Ni/Au–InAlN/AlN/GaN Schottky diodes taking the Fermi-level pinning effect into account.
[1] Yuan L, Chen H and Chen K J 2011 IEEE Electron Device Lett.32 303 [2] Chen W J, Wong K Y and Chen K J 2009 IEEE Electron Device Lett.30 430 [3] Wu Y F, Moore M, Saxler A, Wisleder T and Parikh P 2006 IEEE Device Res. Conf. (June 26–28 2006 State College PA, USA) p 151 [4] Cao D S, Lu H, Chen D J, Han P, Zhang R and Zheng Y D 2011 Chin. Phys. Lett.28 017303 [5] Yu H, Caliskan D and Ozbay E 2006 J. Appl. Phys.100 033501 [6] Hums C, Bl?sing J, Dadgar A, Diez A, Hempel T, Christen J, Krost A, Lorenz K and Alves E 2007 Appl. Phys. Lett.90 022105 [7] Song J, Xu F J, Yan X D, Lin F, Huang C C, You, L P, Yu, T J, Wang X Q, Shen B and Wei K 2010 Appl. Phys. Lett.97 232106 [8] Gonschorek M, Carlin J F, Feltin E, Py M A and Grandjean N 2006 Appl. Phys. Lett.89 062106 [9] Mao W, Hao Y, Yang C, Zhang J C, Ma X H, Wang C, Liu H X, Yang L A, Zhang J F, Zheng X F, Zhang K, Chen Y H and Yang L Y 2013 Chin. Phys. Lett.30 058502 [10] Nam T C, Jang J S and Seong T Y 2012 Curr. Appl. Phys.12 1081 [11] Arslan E, Alt?ndal S, ?z?elik S and Ozbay E 2009 J. Appl. Phys.105 023705 [12] Dong X, Li Z H, Li Z Y, Zhou J J, Li L, Li Y, Zhang L, Xu X J, Xu X and Han C L 2010 Chin. Phys. Lett.27 037102 [13] Rhoderick E H 1988 Metal-Semiconductor Contacts (Oxford: Clarendon Press) p 297 [14] Sze S M 2007 Physics of Semiconductor Devices 3nd edn (New York: Wiley) pp 154, 429 [15] Levinshtein M, Rumyantsev S L and Shur M S 2001 Properties of Advanced Semiconductor Materials (New York: Wiley) p 41 [16] Donoval D, Barus M and Zdimal M 1991 Solid-State Electron.34 1365 [17] Crowell R and Rideout V L 1969 Solid-State Electron.12 89 [18] Mead C A and Spitzer W G 1964 Phys. Rev.134 A713 [19] Butté R, Carlin J F, Feltin E, Gonschorek M, Nicolay S, Christmann G, Simeonov D, Castiglia A, Dorsaz J, Buehlmann H J, Christopoulos S, Baldassarri H?ger von H?gersthal G, Grundy A J D, Mosca M, Pinquier C, Py M A, Demangeot F, Frandon J, Lagoudakis P G, Baumberg J J and Grandjean N 2007 J. Phys. D: Appl. Phys.40 6328 [20] Belyaev A E, Boltovets N S, Ivanov V N, Klad'ko V P, Konakova R V, Kudrik Ya Ya, Kuchuk A V, Milenin V V, Sveshnikov Yu N and Sheremet V N 2008 Semiconductors42 689 [21] Hasegawa H and Akazawa M 2009 J. Korean Phys. Soc.55 1167 [22] Liou B T, Yen S H and Kuo Y K 2005 Appl. Phys. A 81 651