Room-Temperature Operation of 2.4 μm InGaAsSb/AlGaAsSb Quantum-Well Laser Diodes with Low-Threshold Current Density
XING Jun-Liang, ZHANG Yu, LIAO Yong-Ping, WANG Juan, XIANG Wei, XU Ying-Qiang, WANG Guo-Wei, REN Zheng-Wei, NIU Zhi-Chuan**
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Abstract :GaSb-based 2.4 μm InGaAsSb/AlGaAsSb type-I quantum-well laser diode is fabricated. The laser is designed consisting of three In0.35 Ga0.65 As0.1 Sb0.9 /Al0.35 Ga0.65 As0.02 Sb0.98 quantum wells with 1% compressive strain located in the central part of an undoped Al0.35 Ga0.65 As0.02 Sb0.98 waveguide layer. The output power of the laser with a 50-μm-wide 1-mm-long cavity is 28 mW, and the threshold current density is 400 A/cm2 under continuous wave operation mode at room temperature.
出版日期: 2014-04-24
引用本文:
. [J]. 中国物理快报, 2014, 31(05): 54204-054204.
XING Jun-Liang, ZHANG Yu, LIAO Yong-Ping, WANG Juan, XIANG Wei, XU Ying-Qiang, WANG Guo-Wei, REN Zheng-Wei, NIU Zhi-Chuan. Room-Temperature Operation of 2.4 μm InGaAsSb/AlGaAsSb Quantum-Well Laser Diodes with Low-Threshold Current Density. Chin. Phys. Lett., 2014, 31(05): 54204-054204.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/31/5/054204
或
https://cpl.iphy.ac.cn/CN/Y2014/V31/I05/54204
[1] Lin C, Grau M, Dier O and Amann M C 2004 Appl. Phys. Lett. 84 5088 [2] Donetsky D, Kipshidze G, Shterengas L, Hosoda T and Belenky G 2007 Electron. Lett. 43 810 [3] Chen J F, Donetsky D, Shterengas L, Kisin M V, Kipshidze G and Belenky G 2008 IEEE J. Quantum Electron. 44 1204 [4] Gupta J A, Barrios P J, Lapointe J, Aers G C and Storey C 2009 Appl. Phys. Lett. 95 041104 [5] Naehle L, Belahsene S, von Edlinger M, Fischer M, Boissier G, Grech P, Narcy G, Vicet A, Rouillard Y, Koeth J and Worschech L 2011 Electron. Lett. 47 46 [6] Belenky G, Shterengas L, Kipshidze G and Hosoda T 2011 IEEE J. Sel. Top. Quantum Electron. 17 1426 [7] Belenky G, Shterengas L, Wang D, Kipshidze G and Vorobjev L 2009 Semicond. Sci. Technol. 24 115013 [8] Hosoda T, Kipshidze G, Tsvid G, Shterengas L and Belenky G 2010 IEEE Photon. Technol. Lett. 22 718 [9] Vizbaras K and Amann M C 2012 Semicond. Sci. Technol. 27 032001 [10] Mattielloa M, Nikles M, Schilt S, Thevenaz L, Salhic A, Barat D, Vicet A, Rouillard Y, Werner R and Koeth J 2006 Spectrochim. Acta Part A 63 952 [11] Garbuzov D Z, Martinelli R U, Lee H, Menna R J, York P K, DiMarco L A, Harvey M G, Matarese R J, Narayan S Y and Connolly J C 1997 Appl. Phys. Lett. 70 2931 [12] Garbuzov D Z, Lee H, Khalfin V, Martinelli R, Connolly J C and Belenky G L 1999 IEEE Photon. Technol. Lett. 11 794 [13] Zhang Y, Wang G W, Tang B, Xu Y Q, Xu Y and Song G F 2011 J. Semicond. 32 103002 [14] Xing J L, Zhang Y, Xu Y Q, Wang G W, Wang J, Xiang W, Ni H Q, Ren Z W, He Z H and Niu Z C 2014 Chin. Phys. B 23 017805 [15] Yang R Q, Hill C J, Yang B H, Wong C M, Muller R E and Echternach P M 2004 Appl. Phys. Lett. 84 3699
[1]
. [J]. 中国物理快报, 2022, 39(10): 104201-.
[2]
. [J]. 中国物理快报, 0, (): 64203-.
[3]
. [J]. 中国物理快报, 2020, 37(6): 64203-.
[4]
. [J]. 中国物理快报, 2020, 37(4): 44206-.
[5]
. [J]. 中国物理快报, 2020, 37(3): 34203-.
[6]
. [J]. 中国物理快报, 2019, 36(12): 124206-.
[7]
. [J]. 中国物理快报, 2019, 36(11): 114202-.
[8]
. [J]. 中国物理快报, 2019, 36(8): 84204-.
[9]
. [J]. 中国物理快报, 2019, 36(6): 64201-.
[10]
. [J]. 中国物理快报, 2019, 36(4): 44204-.
[11]
. [J]. 中国物理快报, 2019, 36(1): 14205-.
[12]
. [J]. 中国物理快报, 2018, 35(6): 64201-.
[13]
. [J]. 中国物理快报, 2018, 35(6): 64202-.
[14]
. [J]. 中国物理快报, 2017, 34(12): 124201-.
[15]
. [J]. 中国物理快报, 2017, 34(6): 64202-.