Spectroscopic Diagnostics of Atmospheric Argon Microwave Plasma Based on an Inductive Coupling Window-Rectangular Resonator
WANG Zhong** , ZHANG Gui-Xin, LIU Cheng, JIA Zhi-Dong
Department of Electrical Engineering, Tsinghua University, Beijing 100084
Abstract :We present a novel microwave plasma source based on an inductive coupling window-rectangular resonator. A definite volume of atmospheric argon microwave plasma is excited in the source under the input of several kilowatts of microwave power operating at 2.45 GHz. The excitation temperature and electron temperature of the argon plasma are separately researched by using Boltzmann plot and line-to continuum intensity ratio of Ar I spectral lines. Its electron density is inferred from the Stark broadening of the Hβ line at 486.13 nm.
出版日期: 2014-04-24
:
52.80.Pi
(High-frequency and RF discharges)
52.50.Dg
(Plasma sources)
52.70.Kz
(Optical (ultraviolet, visible, infrared) measurements)
[1] Verhoff B, Harilal S S, Freeman J R, Diwakar P K and Hassanein A 2012 J. Appl. Phys. 112 093303 [2] http://physics. nist.gov/PhysRefData/ASD/lines_form.html [3] Sola A, Calzada M D and Gamero A 1995 J. Phys. D: Appl. Phys. 28 1099 [4] Bussiere W, Vacher D, Menecier S and Andre P 2011 Plasma Sources Sci. Technol. 20 045004 [5] Hofsaess D 1979 At. Data Nucl. Data Tables 24 285 [6] Menart J, Heberlein J and Pfender E 1996 J. Quant. Spectrosc. Radiat. Transfer. 56 377 [7] Menzel D H and Pekeris C L 1935 Mon. Not. R. Astron. Soc. 96 77 [8] Laux C O, Spence T G, Kruger C H and Zare R N 2003 Plasma Sources Sci. Technol. 12 125 [9] Yubero C, Garcia M C and Calzada M D 2006 SpectroChim. Acta Part. B 61 540 [10] Vidal C R, Cooper J and Smith E W 1973 Astrophys. J. Suppl. 25 37 [11] Zhu X M, Chen W C and Pu Y K 2008 J. Phys. D: Appl. Phys. 41 105212 [12] Yubero C, Calzada M D and Garcia M C 2005 J. Phys. Soc. Jpn. 74 2249
[1]
. [J]. 中国物理快报, 2016, 33(07): 75201-075201.
[2]
. [J]. 中国物理快报, 2016, 33(02): 28101-028101.
[3]
. [J]. 中国物理快报, 2015, 32(08): 88104-088104.
[4]
. [J]. 中国物理快报, 2015, 32(08): 85201-085201.
[5]
. [J]. 中国物理快报, 2014, 31(05): 55203-055203.
[6]
YANG Cheng;ZHANG Gang;LEE Dae-Young;LI Hua-Min;LIM Young-Dae;YOO Won Jong**;PARK Young-Jun;KIM Jong-Min
. Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications [J]. 中国物理快报, 2011, 28(3): 35202-035202.
[7]
LI Bin;CHEN Qiang**;LIU Zhong-Wei;WANG Zheng-Duo
. A Large Gap of Atmospheric Pressure RF-DBD Glow Discharges in Ar and Mixed Gases [J]. 中国物理快报, 2011, 28(1): 15201-015201.
[8]
LIU Xiang-Mei;SONG Yuan-Hong;WANG You-Nian. One-Dimensional Fluid Model for Dust Particles in Dual-Frequency Capacitively Coupled Silane Discharges [J]. 中国物理快报, 2009, 26(8): 85201-085201.
[9]
LI Ying-Hong;WU Yun;JIA Min;ZHOU Zhang-Wen;GUO Zhi-Gang; Yi-Kang. Optical Emission Spectroscopy Investigation of a Surface Dielectric Barrier Discharge Plasma Aerodynamic Actuator [J]. 中国物理快报, 2008, 25(11): 4068-4071.
[10]
YU Qian;DENG Yong-Feng;LIU Yue;HAN Xian-Wei. Numerical Study on Characteristics of Argon Radio-Frequency Glow Discharge with Varying gas Pressure [J]. 中国物理快报, 2008, 25(7): 2569-2572.
[11]
SHANG Wan-Li;WANG De-Zhen. Concentric-Ring Patterns in a Helium Dielectric Barrier Discharge at Atmospheric Pressure [J]. 中国物理快报, 2007, 24(7): 1992-1994.
[12]
LIU Shu-Hua;DONG Li-Fang;LIU Fu-Cheng;LI Shu-Feng; LI Xue-Chen; WANG Hong-Fang. Experimental Study on Spiral Patterns in Dielectric Barrier Discharge System [J]. 中国物理快报, 2006, 23(12): 3316-3319.
[13]
OU Qiong-Rong;MENG Yue-Dong;XU Xu;SHU Xing-Sheng;REN Zhao-Xing. Effect of Frequency on Emission of XeI* Excimer in a Pulsed Dielectric Barrier Discharge [J]. 中国物理快报, 2004, 21(7): 1317-1319.
[14]
JIANG Zhong-He;HU Xi-Wei;LIU Ming-Hai;GU Cheng-Lin;PAN Yuan. Experiment and Simulation of Atmospheric Pressure Glow Surface Discharge [J]. 中国物理快报, 2003, 20(6): 885-887.
[15]
YIN Zeng-Qian;DONG Li-Fang;CHAI Zhi-Fang;LI Xue-Chen;WANG Long. Temporal Behaviour of Micro-discharge in Dielectric Barrier Discharges [J]. 中国物理快报, 2002, 19(10): 1476-1479.