Trapping Behavior of He in Ti Revisited by ab initio Calculations
WAN Chu-Bin1 , ZHOU Xiao-Song2 , LI Shi-Na1 , ZHANG Hui-Jun1 , LIANG Jian-Hua2 , PENG Shu-Ming2 , JU Xin1**
1 Department of Physics, University of Science and Technology Beijing, Beijing 1000832 Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900
Abstract :We report a detailed ab initio study of the trapping behavior of interstitial helium atoms (IHAs) in hcp Ti. The tetrahedral interstitial site for one He is confirmed to be the most stable IHA configuration, but the most favorable interstitial site comprises two adjacent octahedral sites for two helium atoms. The octahedral IHA can trap another IHA regardless of the site where it is initially located, whereas the tetrahedral IHA cannot. Hybridization among the different states is responsible for the stable order, which has significant implications for He clustering and bubble nucleation that can affect material performance in future fusion reactors. These results provide the basis for the development of improved atomistic models.
收稿日期: 2013-09-16
出版日期: 2014-01-28
:
71.55.-i
(Impurity and defect levels)
71.15.Mb
(Density functional theory, local density approximation, gradient and other corrections)
61.82.-d
(Radiation effects on specific materials)
引用本文:
. [J]. 中国物理快报, 2014, 31(1): 17102-017102.
WAN Chu-Bin, ZHOU Xiao-Song, LI Shi-Na, ZHANG Hui-Jun, LIANG Jian-Hua, PENG Shu-Ming, JU Xin. Trapping Behavior of He in Ti Revisited by ab initio Calculations. Chin. Phys. Lett., 2014, 31(1): 17102-017102.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/31/1/017102
或
https://cpl.iphy.ac.cn/CN/Y2014/V31/I1/17102
[1] Ortiz C J, Caturla M J, Fu C C and Willaime F 2009 Phys. Rev. B 80 134109 [2] Farrell K, Maziasz P J, Lee E H and Mansur L K 1983 Radiat. Eff. 78 277 [3] Stoller R E 1990 J. Nucl. Mater. 174 289 [4] Van-der-Schaaf B, Gelles D S, Jitsukawa S, Kimura A, Klueh R L, M?slang A and Odette G R 2000 J. Nucl. Mater. 283 52 [5] Stoller R E and Odette G R 1985 J. Nucl. Mater. 131 118 [6] Wilson W D and Johnson R A 1972 Interatomic Potentials and Simulation of Lattice Defects (New York: Plenum) vol 375 p 375 [7] Li Y, Deng A H, Zhou Y L, Zhou B, Wang K, Hou Q, Shi L Q, Qin X B and Wang B Y 2012 Chin. Phys. Lett. 29 047801 [8] Zhang L, He Z J, Liu C Z, Wang X F and Shi L Q 2012 Chin. Phys. Lett. 29 012501 [9] Wan C B, Zhou X S, Wang Y T, Li S N, Ju X and Peng S M 2014 J. Nucl. Mater. 444 142 [10] Zhang L R, Deng A H, Yang D X, Zhou Y L, Hou Q, Shi L Q, Zhong Y R and Wang B Y 2011 Chin. Phys. Lett. 28 077802 [11] Seletskaia T, Osetsky Y, Stoller R E and Stocks G M 2008 Phys. Rev. B 78 134103 [12] Fu C C and Willaime F 2005 Phys. Rev. B 72 064117 [13] Becquart C S and Domain C 2006 Phys. Rev. Lett. 97 196402 [14] Lu Y F, Shi L Q, Ding W and Long X G 2012 Chin. Phys. Lett. 29 013102 [15] Wang Y L, Liu S, Rong L J and Wang Y M 2010 J. Nucl. Mater. 402 55 [16] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [17] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [18] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [19] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [20] Bl?chl P E 1994 Phys. Rev. B 50 17953 [21] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [22] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671 [23] Boulware D G and Desser S 1972 Phys. Lett. B 40 227 [24] Picraux S T and Vook F L 1974 J. Nucl. Mater. 53 246 [25] Seletskaia T, Osetsky Y, Stoller R E and Stocks G M 2005 Phys. Rev. Lett. 94 046403 [26] Shang S L, Hector L G, Wang Y and Liu Z K 2011 Phys. Rev. B 83 224104 [27] Tunde R A, Scandolo S, Mazzarello R, Nsengiyumva S, H ?rting M and Thomas B D 2009 Philos. Mag. 89 1629 [28] Le-Bacq O, Willaime F and Pasturel A 1999 Phys. Rev. B 59 8508 [29] Hashimoto E, Smirnov E A and Kino T 1984 J. Phys. F: Met. Phys. 14 L215 [30] Shestopal V O 1966 Sov. Phys. Solid State 7 2798 [31] Vassen R, Trinkaus H and Jung P 1991 J. Nucl. Mater. 183 1
[1]
. [J]. 中国物理快报, 2021, 38(8): 87103-087103.
[2]
. [J]. 中国物理快报, 2021, 38(2): 26103-.
[3]
. [J]. 中国物理快报, 2018, 35(5): 54201-.
[4]
. [J]. 中国物理快报, 2016, 33(02): 26105-026105.
[5]
. [J]. 中国物理快报, 2016, 33(01): 16101-016101.
[6]
. [J]. 中国物理快报, 2016, 33(01): 18101-018101.
[7]
. [J]. 中国物理快报, 2015, 32(5): 56801-056801.
[8]
. [J]. 中国物理快报, 2014, 31(05): 57307-057307.
[9]
CUI Jin-Ming1 , CHEN Xiang-Dong1 , FAN Le-Le2 , GONG Zhao-Jun1 , ZOU Chong-Wen2 , SUN Fang-Wen1** , HAN Zheng-Fu1 , GUO Guang-Can1 . Generation of Nitrogen-Vacancy Centers in Diamond with Ion Implantation [J]. 中国物理快报, 2012, 29(3): 36103-036103.
[10]
GAO Li-Peng;HAN Pei-De**;MAO Xue;FAN Yu-Jie;HU Shao-Xu;ZHAO Chun-Hua;MI Yan-Hong
. Deep Energy Levels Formed by Se Implantation in Si [J]. 中国物理快报, 2011, 28(3): 36108-036108.
[11]
LIU Bing-Ce;LIU Ci-Hui;FU Zhu-Xi;Yi Bo. Effects of Grain Boundary Barrier in ZnO/Si Heterostructure [J]. 中国物理快报, 2009, 26(11): 117101-117101.
[12]
HE Man-Chao;FANG Zhi-Jie; ZHANG Ping. Theoretical Studies on Defects of Kaolinite in Clays [J]. 中国物理快报, 2009, 26(5): 59101-059101.
[13]
YUE Fang-Yu;CHEN Lu;WU Jun;HU Zhi-Gao;LI Ya-Wei;YANG Ping-Xiong;CHU Jun-Hao;. Impurity Activation in MBE-Grown As-Doped HgCdTe by Modulated Photoluminescence Spectra [J]. 中国物理快报, 2009, 26(4): 47804-047804.
[14]
FANG Zhi-Jie;FANG Cheng;SHI Li-Jie;LIU Yong-Hui;HE Man-Chao. First-Principles Study of Defects in CuGaO2 [J]. 中国物理快报, 2008, 25(8): 2997-3000.
[15]
JIANG Xiao-Shu;Walter R. L. Lambrecht. Jahn--Teller Distortion of the Zinc Vacancy in ZnGeP2 [J]. 中国物理快报, 2008, 25(3): 1075-1078.