A Device for Measuring the Density and Liquidus Temperature of Molten Fluorides for Heat Transfer and Storage
CHENG Jin-Hui1,2, ZHANG Peng1**, AN Xue-Hui1, WANG Kun1, ZUO Yong1, YAN Heng-Wei3, LI Zhong1
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 2University of Chinese Academy of Sciences, Beijing 100049 3Zhengzhou Research Institute of CHALCO, Zhengzhou 450041
Abstract:An experimental device is constructed for measuring the density and liquidus temperature of molten fluorides by using the Archimedean and cooling curve methods respectively. Its operation is tested by measuring the density and liquidus temperature of NaCl salt. The accuracy of the liquidus temperature measurement is about ±1 K. The density of NaCl measured is in good agreement with the widely recognized data and the deviation is less than 0.2%. The liquidus temperature and density of a typical heat transfer fluoride LiF-NaF-KF (46.5-11.5-42mol%) are investigated.
. [J]. 中国物理快报, 2013, 30(12): 126501-126501.
CHENG Jin-Hui, ZHANG Peng, AN Xue-Hui, WANG Kun, ZUO Yong, YAN Heng-Wei, LI Zhong. A Device for Measuring the Density and Liquidus Temperature of Molten Fluorides for Heat Transfer and Storage. Chin. Phys. Lett., 2013, 30(12): 126501-126501.
[1] Williams D F 2006 ORNL/TM-2006/69 [2] Chen Y C, Wu Y T, Ren N and Ma C F 2011 Sci. Chin. Technol. Sci.54 3022 [3] Williams D F, Toth L M and Clarno K T ORNL/TM-2006/12 [4] van der Meer J P M and Konings R J M 2007 J. Nucl. Mater.360 16 [5] Benes O, Cabet C Delpech S, Hosnedl P et al 2009 Review Report on Liquid Salts for Various Applications [6] Uhlir J 2007 J. Nucl. Mater.360 6 [7] Macpherson H G 1985 Nucl. Sci. Eng.90 374 [8] Grimes W R 1970 Nucl. Appl. Technol.8 37 [9] Ingersoll D T 2005 ORNL/TM-2005/218 [10] Bardet P, Blandford E, Fratoni M, Niquille A, Greenspan E and Peterson P F 2008 ICAPP, Anaheim (CA USA) [11] de Zwaan S J, Boer B, Lathouwers D and Kloosterman J L 2007 Ann. Nucl. Energy34 83 [12] Ingersoll D T, Forsberg C W and MacDonald P E 2006 ORNL/TM-2006/140 [13] Rogers D J, Yoko T and Janz G J 1982 J. Chem. Eng. Data27 366 [14] Janz G J 1980 J. Phys. Chem. Ref. Data9 791 [15] Clark R P 1973 J. Chem. Eng. Data18 67 [16] Janz G J and Tomkins R P T 1981 NSRDS-NBS61 Part IV [17] Sohal M S, Ebner M A, Sabharwall P and Sharpe P 2010 INL/EXT-10-18297 [18] Mellors G W and Senderoff S 1965 Electrochemistry, Proceedings of the First Australian Conference on Electrochemistry (New York: Pergamon Press) pp 578–598 [19] Hoffman H W 1958 ORNL-CF-58-2-4032 (U.S. Atomic Energy Comission, Oak Ridge National Laboratory, Technical Information Service, Oakridge, TN) [20] Grele M D and Gedeon L 1954 National Advisory Committee for Aeronautics Report NACA RM E53L18 [21] Powers W D, Cohen S I and Greene N D 1963 Nucl. Sci. Eng.71 200 [22] Chrenkova M, Danek V, Vasiljev R, Silny A, Kremetsky V and Polyakov E 2003 J. Mol. Liq.102 213 [23] Kubikova B, Kucharik M, Vasiljiev R and Boca M 2009 J. Chem. Eng. Data54 2081 [24] Janz G J 1988 J. Phys. Chem. Ref. Data17 1 [25] Kirshenbaum A D, Cahill J A, McGonigal P J and Grosse A V 1962 J. Inorg. Nucl. Chem.24 1287 [26] Grimes W R, Bohlmann E G, McDuffie H F and Watson G M 1965 ORNL-3913 [27] Hara S and Ogin K 1989 ISIJ. Int.29 477