Analytical Arbitrary-Wave Solutions of the Deformed Hyperbolic Eckart Potential by the Nikiforov–Uvarov Method
ZHANG Min-Cang*
Zhi-Zhi Literature Information Resources Center, Shaanxi Normal University, Xi'an 710062
Abstract :The arbitrary ? -wave solutions to the Schr?dinger equation for the deformed hyperbolic Eckart potential is investigated analytically by using the Nikiforov–Uvarov method. The centrifugal term is treated with the improved Greene and Aldrich approximation scheme. The wave functions are expressed in terms of the Jacobi polynomial or the hypergeometric function. The discrete spectrum is obtained and it is shown that the deformed hyperbolic Eckart potential is a shape-invariant potential and the bound state energy is independent of the deformation parameter q .
收稿日期: 2013-07-02
出版日期: 2013-11-30
:
03.65.Ge
(Solutions of wave equations: bound states)
02.30.Gp
(Special functions)
03.65.Db
(Functional analytical methods)
[1] Schiff L I 1955 Quantum Mechanics 3rd edn (New York: McGraw-Hill) [2] Alhaidari A D 2010 Phys. Scr. 81 025013 [3] Infeld L and Hull T E 1951 Rev. Mod. Phys. 23 21 [4] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267 [5] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhauser) [6] Berkdemir C, Berkdemir A and Han J G 2006 Chem. Phys. Lett. 417 326 [7] Morse P M 1929 Phys. Rev. 34 57 [8] Rosen N and Morse P M 1932 Phys. Rev. 42 210 [9] Eckart C 1930 Phys. Rev. 35 1303 [10] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363 [11] Wei G F, Long C Y and Dong S H 2008 Phys. Lett. A 372 2592 [12] Jia C S, Liu J Y and Wang P Q 2008 Phys. Lett. A 372 4779 [13] Qiang W C and Dong S H 2007 Phys. Lett. A 368 13 [14] Bayrak O and Boztosun I 2006 J. Phys. A: Math. Gen. 39 6955 [15] Bayrak O, Kocak G and Boztosun I 2006 J. Phys. A: Math. Gen. 39 11521 [16] Serrano F A, G u X Y and Dong S H 2010 J. Math. Phys. 51 082103 [17] Huang-Fu G Q and Zhang M C 2013 Phys. Scr. 87 055006 [18] Suparmi A, Cari C and Yuliani H 2013 Adv. Phys. Theor. Appl. 16 64 [19] Weiss J J 1964 J. Chem. Phys. 41 1120 [20] Jia C S, Li Y, Sun Y, Liu J Y and Sun L T 2003 Phys. Lett. A 311 115 [21] E?rifes H, Demirhan D and Büyükkil? F 1999 Phys. Scr. 60 195 [22] Arai A 1991 J. Math. Anal. Appl. 158 63 [23] Grosche C 2005 J. Phys. A: Math. Gen. 38 2947 [24] Faridfathi G http://etd.lib.metu.edu.tr/upload/12606276/index.pdf and references therein [25] Gradsgteyn I S and Ryzhik I M 1994 Tables Integrals, Series, and Products 5th edn (New York: Academic Press)
[1]
. [J]. 中国物理快报, 2020, 37(9): 90303-.
[2]
. [J]. 中国物理快报, 2020, 37(8): 89901-.
[3]
. [J]. 中国物理快报, 2018, 35(1): 10301-.
[4]
. [J]. 中国物理快报, 2017, 34(7): 70304-.
[5]
. [J]. 中国物理快报, 2017, 34(5): 50301-.
[6]
. [J]. 中国物理快报, 2017, 34(1): 10301-010301.
[7]
. [J]. 中国物理快报, 2016, 33(09): 90301-090301.
[8]
. [J]. 中国物理快报, 2016, 33(01): 10303-010303.
[9]
. [J]. 中国物理快报, 2015, 32(11): 110301-110301.
[10]
. [J]. 中国物理快报, 2015, 32(07): 70301-070301.
[11]
. [J]. 中国物理快报, 2014, 31(12): 120301-120301.
[12]
. [J]. 中国物理快报, 2013, 30(6): 60303-060303.
[13]
. [J]. Chin. Phys. Lett., 2013, 30(2): 20303-020303.
[14]
. [J]. Chin. Phys. Lett., 2013, 30(2): 20305-020305.
[15]
. [J]. Chin. Phys. Lett., 2013, 30(1): 10304-010304.