Electrical Characteristics of High Mobility Si/Si0.5Ge0.5/SOI Quantum-Well p-MOSFETs with a Gate Length of 100 nm and an Equivalent Oxide Thickness of 1.1 nm
MU Zhi-Qiang, YU Wen-Jie**, ZHANG Bo, XUE Zhong-Ying, CHEN Ming
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
Abstract:Short-channel high-mobility Si/Si0.5Ge0.5/silicon-on-insulator (SOI) quantum-well p-type metal-oxide-semiconductor field effect transistors (p-MOSFETs) were fabricated and electrically characterized. The transistors show good transfer and output characteristics with Ion/Ioff ratio up to 105 and sub-threshold slope down to 100 mV/dec. HfO2/TiN gate stack is employed and the equivalent oxide thickness of 1.1 nm is achieved. The effective hole mobility of the transistors reaches 200 cm2/V?s, which is 2.12 times the Si universal hole mobility.
(Semiconductor-device characterization, design, and modeling)
引用本文:
. [J]. 中国物理快报, 2013, 30(10): 108502-108502.
MU Zhi-Qiang, YU Wen-Jie, ZHANG Bo, XUE Zhong-Ying, CHEN Ming. Electrical Characteristics of High Mobility Si/Si0.5Ge0.5/SOI Quantum-Well p-MOSFETs with a Gate Length of 100 nm and an Equivalent Oxide Thickness of 1.1 nm. Chin. Phys. Lett., 2013, 30(10): 108502-108502.
[1] Dhar S, Kosina H, Palankovski V, Ungersboeck S E and Selberherr S 2005 IEEE Trans. Electron Devices52 527 [2] Tang Y T, Cerrina C, Waite A M, Afshar-Hanaee N, Evans A G R, Grasby T J, Parker E H C, Whall T E, Norris D J, Chang A C K and Cullis A G 2005 Semicond. Sci. Technol.20 673 [3] Yu W, Zhang B, Zhao Q T, Hartmann J M, Buca D, Nichau A, Lupták R, Lopes J M, Lenk S, Luysberg M, Bourdelle K K, Wang X and Mantl S 2011 Solid-State Electron.62 185 [4] Liu H X, Li B, Li J, Yuan B and Hao Y 2010 Chin. Phys. B 19 127303 [5] Thompson S, Anand N, Armstrong M et al 2002 IEEE IEDM Tech. Dig. (San Francisco, USA 8–11 December 2002) p 61 [6] Diouf C, Cros A, Soussou A, Rideau D, Haendler S, Rosa J and Ghibaudo G 2013 Solid-State Electron.86 45 [7] Qin S S, Zhang H M, Hu H Y, Dai X Y, Xuan R X and Shu B 2010 Chin. Phys. B 19 117309 [8] Andrieu F, Ernst T, Romanjek K, Weber O, Renard C, Hartmann J M, Toffoli A, Papon A M, Truche R, Holliger P, Brevard L, Ghibaudo G and Deleonibus S 2003 Proc. Eur. Solid-State Device Res. Conf. (Estoril, Portugal 16–18 September 2003) p 267 [9] Yu W, Zhang B, Zhao Q T, Buca D, Hartmann J M, Lupták R, Mussler G, Fox A, Bourdelle K K, Wang X and Mantl S 2012 IEEE Electron Device Lett.33 758 [10] Lin F, Gong D W, Ke L, Zhang S K and Sheng C 2000 Chin. Phys. Lett.17 288 [11] Hartmann J M, Abbadie A and Favier S 2011 J. Appl. Phys.110 083529 [12] Rideau D, Dray A, Gilibert F, Agut F, Giguerre L, Gouget G, Minondo M and Juge A 2004 Proc. IEEE Int. Conf. Microelectron. Test Struct. (Awaji, Japan 22–25 March 2004) p 149 [13] Zhang B, Yu W, Zhao Q T, Mussler G, Jin L, Buca D, Holl?nder B, Hartmann J M, Zhang M, Wang X and Mantl S 2011 Appl. Phys. Lett.98 252101 [14] Minamisawa R A, Schmidt M, Durgun ?zben E, Lopes J M J, Hartmann J M, Bourdelle K K, Schubert J, Zhao Q T, Buca D and Mantl S 2011 Microelectron. Eng.88 2955 [15] Koomen J 1973 Solid-State Electron.16 801 [16] Sodini C, Ekstedt T and Moll J 1982 Solid-State Electron.25 833 [17] Romanjek K, Andrieu F, Ernst T and Ghibaudo G 2004 IEEE Electron Device Lett.25 583