Reduction of the Differential Light Shift by the Spatial Periodicity in an Optical Lattice
YUE Xu-Guang, XU Xia, CHEN Xu-Zong, ZHOU Xiao-Ji**
School of Electronics Engineering & Computer Science, Peking University, Beijing 100871
Abstract :We study the spatial periodicity effects on the differential light shift of noninteracting atoms in an optical lattice. Through the Rabi-spectrum approach, when the wavelength of the optical lattice is not magic, a reduction to the differential light shift is expected. The reduction results from the Bloch bands induced by the quantized motion in the periodic potential. Taking the microwave transition of rubidium atoms as an example, this reduction at some wavelengths can reach one order of magnitude, compared to the data without considering the spatial profile of the optical lattice. When the atomic temperature is considered, the differential light shift increases or decreases with temperature, depending on the wavelength of the lattice. Our results should be beneficial for microwave optical lattice clock and precision measurements.
收稿日期: 2013-08-12
出版日期: 2013-11-21
:
37.10.Jk
(Atoms in optical lattices)
06.30.Ft
(Time and frequency)
32.80.Qk
(Coherent control of atomic interactions with photons)
[1] Cohen-Tannoudji C and Guéry-Odelin D 2011 Advances in Atomic Physics: An Overview (Singapore: World Scientific) [2] Cronin A D and Pritchard D E 2009 Rev. Mod. Phys. 81 1051 [3] Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179 [4] Ye J, Kimble H J et al 2008 Science 320 1734 [5] Derevianko A Katori H 2011 Rev. Mod. Phys. 83 331 [6] Parazzoli L, Hankin A et al 2012 Phys. Rev. Lett. 109 230401 [7] Deutsch I H, Brennen G K et al 2000 Fortschr. Phys. 48 925 [8] Treutlein P, Steinmetz T et al 2006 Fortschr. Phys. 54 702 [9] Lewenstein M, Sanpera A et al 2007 Adv. Phys. 56 243 [10] Bloch I and Zwerger W 2008 Rev. Mod. Phys. 80 885 [11] Kuhr S, Alt W et al 2005 Phys. Rev. A 72 023406 [12] Takamoto M, Katori H 2003 Phys. Rev. Lett. 91 173005 [13] Taichenachev A, Yudin V et al 2008 Phys. Rev. Lett. 101 193601 [14] Katori H, Hashiguchi K et al 2009 Phys. Rev. Lett. 103 153004 [15] Westergaard P, Lodewyck J et al 2011 Phys. Rev. Lett. 106 210801 [16] Campbell G K, Boyd M M et al 2009 Science 324 360 [17] Blatt S, Thomsen J et al 2009 Phys. Rev. A 80 052703 [18] Band Y B and Osherov I 2011 Phys. Rev. A 84 013822 [19] Band Y B and Vardi A 2006 Phys. Rev. A 74 033807 [20] Yu D 2012 Phys. Rev. A 85 032705 [21] Rosenbusch P, Ghezali S et al 2009 Phys. Rev. A 79 013404 [22] Katori H, Takamoto M et al 2003 Phys. Rev. Lett. 91 173005 [23] Zhou X, Chen X et al 2009 Chin. Phys. Lett. 26 090601 [24] Zhou X, Xu X et al 2010 Phys. Rev. A 81 012115 [25] Zheng Y, Zhou X et al 2006 Chin. Phys. Lett. 23 1687 [26] Lemonde P and Wolf P 2005 Phys. Rev. A 72 033409 [27] Bloch I, Greiner M 2005 Advances in Atomic, Molecular, and Optical Phys. 52 1 [28] Kaplan A, Andersen M F et al 2005 J. Opt. B: Quantum Semiclass. Opt. 7 R103 [29] Schroeder D 2000 An Introduction to Thermal Physics (New York: Addison Wesley) [30] Zhou X, Fan Y et al 2010 Phys. Rev. A 81 013615
[1]
. [J]. 中国物理快报, 2022, 39(8): 80601-.
[2]
. [J]. 中国物理快报, 2022, 39(6): 63701-.
[3]
. [J]. 中国物理快报, 2020, 37(5): 53702-053702.
[4]
. [J]. 中国物理快报, 2020, 37(4): 40301-.
[5]
. [J]. 中国物理快报, 2019, 36(12): 120601-.
[6]
. [J]. 中国物理快报, 2019, 36(8): 80302-.
[7]
. [J]. 中国物理快报, 2018, 35(4): 43203-.
[8]
. [J]. 中国物理快报, 2018, 35(1): 13701-013701.
[9]
. [J]. 中国物理快报, 2017, 34(8): 84207-.
[10]
. [J]. 中国物理快报, 2017, 34(7): 76701-.
[11]
. [J]. 中国物理快报, 2017, 34(2): 20601-020601.
[12]
. [J]. 中国物理快报, 2016, 33(10): 103201-103201.
[13]
. [J]. 中国物理快报, 2016, 33(07): 70601-070601.
[14]
. [J]. 中国物理快报, 2015, 32(09): 90601-090601.
[15]
. [J]. 中国物理快报, 2015, 32(03): 33201-033201.