Abstract:X-ray diffraction patterns of graphite oxide (GO) are theoretically simulated as a function of the displacements of carbon atoms using the Debye–Waller factor in terms of the Warren–Bodenstein equation. The results demonstrate that GO has the turbostratically stacked structure. The high order (00l) peaks gradually disappear with the increase in atomic thermal vibrations along c-axis while the (hk0) ones weaken for the vibrations along a-axis. When the displacement deviation ua=0.015 nm and uc=0.100 nm the computed result is consistent with the experimental measurements.