Nonreciprocal Magneto-Plasmonic Waveguide with Compact Metal-Sandwiched Structure
JIN Yi-Chang, XU Chao, QIU Hui-Ye, XIANG Le-Qiang, YANG Jian-Yi, JIANG Xiao-Qing**
Department of Information Science and Electronics Engineering, Zhejiang University, Hangzhou 310027
Abstract :A magneto-optical (MO) metal-sandwiched multilayered structure composed of metal, MO medium and dielectric buffer layers is presented and investigated by finite-element-method-based-mode solver and perturbation theory. The results show that this structure exhibits large nonreciprocal phase shift, strong mode confinement in the narrow buffer layers as well as very low propagation loss. The propagation length with 1 dB loss is much longer than the required length of π /2 nonreciprocal phase shifts in this structure. The modal area is smaller than half of the conventional MO waveguides. This phenomenon can be used to achieve a compact plasmonic isolator based on the Mach–Zehnder interferometer.
收稿日期: 2013-06-13
出版日期: 2013-11-21
:
42.82.-m
(Integrated optics)
73.20.Mf
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
85.70.Sq
(Magnetooptical devices)
[1] Wallenhorst M, Niemijller M, D?tsch H, Hertel P, Gerhardt R and Gather B 1995 J. Appl. Phys. 77 2902 [2] Popkov A F, Fehndrich M, Lohmeyer M and D?tsch H 1998 Appl. Phys. Lett. 72 2508 [3] Bahlmann N, Lohmeyer M, Dotsch H and Hertel P 1999 IEEE J. Quantum Electron. 35 250 [4] Espinola R L, Izuhara T, Tsai M C, Osgood R M, D?tsch H 2004 Opt. Lett. 29 941 [5] Fujita J, Levy M and Osgood R M, Wilkens L and D?tsch H 2000 Appl. Phys. Lett. 76 2158 [6] Shoji Y and Mizumoto T 2007 Opt. Express 15 639 [7] Shoji Y, Ito M, Shirato Y and Mizumoto T 2012 Opt. Express 20 18440 [8] Zhou H F, Chee J, Song J F and Lo G Q 2012 Opt. Express 20 8256 [9] Khurgin J B 2006 Appl. Phys. Lett. 89 251115 [10] Sepúlveda B, Lechuga L M and Armelles G 2006 J. Lightwave Technol. 24 945 [11] Dai D X and He S L 2009 Opt. Express 17 16646 [12] Oulton R F, Sorger V J, Genov D A, Pile D F P and Zhang X 2008 Nat. Photon. 2 496 [13] Chen L, Li X, Wang G P, Li W, Chen S H, Xiao L and Gao D S 2012 J. Lightwave Technol. 30 163 [14] Chen J J, Li Z and Gong Q H 2009 Chin. Phys. B 18 3535 [15] Zhang L, Yang S 2013 Chin. Phys. Lett. 30 034208 [16] Shintaku T, Uno T and Kobayashi M 1993 J. Appl. Phys. 74 4877 [17] Chen R Y, Tao D J, Zhou H F, Hao Y L, Yang J Y, Wang M H and Jiang X Q 2009 Opt. Commun. 282 862 [18] D?tsch H, Bahlmann N, Zhuromskyy O, Hammer M, Wilkens L, Gerhardt R, Hertel P and Popkov A 2005 J. Opt. Soc. Am. B 22 240
[1]
. [J]. 中国物理快报, 2022, 39(12): 124201-124201.
[2]
. [J]. 中国物理快报, 2022, 39(4): 44203-.
[3]
. [J]. 中国物理快报, 2021, 38(10): 109902-.
[4]
. [J]. 中国物理快报, 2020, 37(8): 84201-084201.
[5]
. [J]. 中国物理快报, 2020, 37(8): 80102-.
[6]
. [J]. 中国物理快报, 2020, 37(7): 77801-.
[7]
. [J]. 中国物理快报, 2019, 36(8): 84202-.
[8]
. [J]. 中国物理快报, 2018, 35(1): 14201-.
[9]
. [J]. 中国物理快报, 2017, 34(9): 94203-.
[10]
. [J]. 中国物理快报, 2016, 33(08): 87303-087303.
[11]
. [J]. 中国物理快报, 2016, 33(05): 54202-054202.
[12]
. [J]. 中国物理快报, 2014, 31(1): 14201-014201.
[13]
. [J]. 中国物理快报, 2014, 31(1): 14206-014206.
[14]
. [J]. 中国物理快报, 2013, 30(8): 84204-084204.
[15]
. [J]. 中国物理快报, 2012, 29(9): 94204-094204.