Synchronization of Colored Networks via Discrete Control
SUN Mei** , LI Dan-Dan, HAN Dun, JIA Qiang
Nonlinear Scientific Research Center, Jiangsu University, Zhenjiang 212013
Abstract :We investigate the synchronization problem of two colored networks via discrete control based on the Lyapunov stability theory. First, intermittent control is adopted to synchronize two edge-colored networks, and the sufficient condition connecting the control width, control period and the network topology is established for reaching synchronization. Then, an impulsive controller is designed to ensure two general colored networks in synchronization, and the relation among the impulsive interval, impulsive gain and the network topology for synchronization is also discovered. Finally, two numerical examples are provided to demonstrate and verify the theoretical results.
收稿日期: 2013-04-15
出版日期: 2013-11-21
[1] Ning B, Ren Q S and Zhao J Y 2012 Physica A 391 3061 [2] Meng Q K and Zhu J Y 2009 Chin. Phys. Lett. 26 086401 [3] Yu W W, Chen G R and Cao M 2011 IEEE Trans. Autom. Control 56 1436 [4] Liu Y R, Wang Z D and Liu X H 2012 Neurocomputing 94 46 [5] Liu Y R, Wang Z D and Liu X H 2012 Neural Process. Lett. 36 1 [6] Wu Z Y, Xu X J, Chen G R and Fu X C 2012 Chaos 22 043137 [7] Becu J M, Dah M, Manoussakis Y and Mendy G 2010 Eur. J. Comb. 31 442 [8] Wu B Y 2012 Discrete Optim. 9 50 [9] Fujita S Y and NakamigawaT 2008 Discrete Appl. Math. 156 3339 [10] Wang Y G and Desmedt Y 2011 Inf. Process. Lett. 111 634 [11] Sun M, Chen Y, Cao L and Wang X F 2012 Chin. Phys. Lett. 29 020503 [12] Zhong Q S, Bao J F and Yu Y B 2008 Chin. Phys. Lett. 25 2812 [13] Cai S M, Hao J J, He Q B and Liu Z R 2011 Phys. Lett. A 375 1965 [14] Song Q, Cao J D and Liu F 2010 Phys. Lett. A 374 544
[1]
. [J]. 中国物理快报, 2019, 36(5): 50301-.
[2]
. [J]. 中国物理快报, 2019, 36(3): 30302-.
[3]
. [J]. 中国物理快报, 2018, 35(9): 90301-.
[4]
GUO Xiao-Yong;*;LI Jun-Min
. Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control [J]. 中国物理快报, 2011, 28(12): 120503-120503.
[5]
LI Hai-Yan**;HU Yun-An
. Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems [J]. 中国物理快报, 2011, 28(12): 120508-120508.
[6]
TANG Wen-Yan**;QU Zhi-Hua;GUO Yi
. Analysis and Control of Two-Layer Frenkel–Kontorova Model [J]. 中国物理快报, 2011, 28(11): 110204-110204.
[7]
XU Wei;YUAN Bo;AO Ping;**
. Construction of Lyapunov Function for Dissipative Gyroscopic System [J]. 中国物理快报, 2011, 28(5): 50201-050201.
[8]
GUO Rong-Wei
. Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems [J]. 中国物理快报, 2011, 28(4): 40205-040205.
[9]
M. Mossa Al-Sawalha;M. S. M. Noorani. Chaos Anti-synchronization between Two Novel Different Hyperchaotic Systems [J]. 中国物理快报, 2008, 25(8): 2743-2746.
[10]
HUANG Yu-Xin;YANG Yu-Jun;WU Bin;GUO Fu-Ming;ZHU Qi-Ren. Cyclic State Orientation of Polar Molecules Produced by a Train of Half-Cycle Pulse Clusters of a Long Repetition Period [J]. 中国物理快报, 2008, 25(4): 1259-1262.
[11]
HUANG Yu-Xin;YANG Yu-Jun;ZHU Hong-Yu;WANG Li;WANG Hui;ZHU Qi-Ren. Field-Free Molecular Orientation Generated from Cyclic Rotational States by Using Two Trains of Half-Cycle Pulses [J]. 中国物理快报, 2007, 24(11): 3111-3114.
[12]
CHI Fang-Ping;YANG Yu-Jun; HUANG Yu-Xin;ZHU Qi-Ren. Dynamic Mechanism of Sustainable Molecular Orientation Generated From Cyclic Rotational States [J]. 中国物理快报, 2006, 23(5): 1150-1153.
[13]
CHI Fang-Ping;CHEN Ji-Gen;CHEN Gao;YANG Yu-Jun;DU Wen-He;ZHU Hai-Yan;ZHU Qi-Ren. Field-Free Orientation of Molecules with Small Permanent Dipole Moments by Using a Train of Half-Cycle Pulses [J]. 中国物理快报, 2005, 22(3): 576-679.
[14]
GUAN Xin-Ping;HE Yan-Hui. Stabilizing Unstable Equilibrium Point of Unified Chaotic Systems with Unknown Parameter Using Sliding Mode Control [J]. 中国物理快报, 2004, 21(2): 227-229.
[15]
GUAN Xin-Pin;HUA Chang-Chun. Synchronization of Uncertain Time Delay Chaotic Systems using the Adaptive Fuzzy Method [J]. 中国物理快报, 2002, 19(8): 1031-1034.