Minimal Ward–Takahashi Vertices and Light Cone Pion Distribution Amplitudes from the GND Quark Model
LI Chuan1 , JIANG Shao-Zhou3 , WANG Qing1,2**
1 Department of Physics, Tsinghua University, Beijing 1000842 Center for High Energy Physics, Tsinghua University, Beijing 1000843 College of Physics Science and Technology, Guangxi University, Nanning 530004
Abstract :The gauge-invariant, nonlocal, dynamical quark model is shown to generate minimal vertices that satisfy the Ward–Takahashi identities and the flat-like form of the light-cone pion distribution amplitudes. Non-flat form amplitudes can be produced only if we take a finite momentum cutoff and include nonzero pion mass corrections or go beyond the minimal vertices. A by-product of our investigation shows that the variable u appearing in light-cone pion distribution amplitudes is just the standard Feynman parameter in the Feynman parameter integrals.
收稿日期: 2013-05-03
出版日期: 2013-11-21
:
11.10.Lm
(Nonlinear or nonlocal theories and models)
12.39.-x
(Phenomenological quark models)
13.40.Gp
(Electromagnetic form factors)
[1] Yang H, Wang Q and Lu Q 2002 Phys. Lett. B 532 240 [2] Yang H, Wang Q, Kuang Y P and Lu Q 2002 Phys. Rev. D 66 014019 [3] Cahill R T and Roberts C D 1985 Phys. Rev. D 32 2419 [4] Bowler R D and Birse M C 1995 Nucl. Phys. A 582 655 [5] Zhang H H, Jiang S Z, Lang J Y and Wang Q 2008 Phys. Rev. D 77 055003 [6] Ma Y L and Wang Q 2003 Phys. Lett. B 560 188 Jiang S Z, Zhang Y, Li C and Wang Q 2010 Phys. Rev. D 81 014001 Jiang S Z and Wang Q 2010 Phys. Rev. D 81 094037 Jiang S Z, Zhang Y and Wang Q 2013 Phys. Rev. D 87 094014 [7] Gasser J and Leutwyler H 1984 Ann. Phys. 158 142 Gasser J and Leutwyler H 1985 Nucl. Phys. B 250 465 [8] K ?z?ersü A and Pennington M R 2009 Phys. Rev. D 79 125020 Bashir A, Bermudez R, Chang L and Roberts C 2012 Phys. Rev. C 85 045205 [9] Chang L and Roberts C D 2009 Phys. Rev. Lett. 103 081601 [10] Holdom H and Lewis R 1995 Phys. Rev. D 51 6318 [11] Lepage G P and Brodsky S J 1980 Phys. Rev. D 22 2157 [12] Chernyak V L and Zhitnitsky A R 1982 Nucl. Phys. B 201 492 [13] Arriola E R and Broniowski W 2002 Phys. Rev. D 66 094016 [14] Wu X G and Huang T 2011 Phys. Rev. D 84 074011 Wu X G, Huang T and Zhong T 2013 Chin. Phys. C 37 063105 Wu X G, Huang T and Zhong T 2013 Chin. Phys. Lett. 30 041201 [15] Kotko P and Praszalowicz M 2010 Phys. Rev. D 81 034019 [16] Praszalowicz M and Rostworowski A 2001 Phys. Rev. D 64 074003 [17] Nam S I and Kim H C 2006 Phys. Rev. D 74 076005 Nam S I and Kim H C 2006 Phys. Rev. D 74 096007 [18] Chang L, Clo?t I C, Cobos-Martinez J J, Roberts C D, Schmidt S M and Tandy P C 2013 Phys. Rev. Lett. 110 132001 [19] Beneke M and Feldmann Th 2000 Nucl. Phys. B 592 3 [20] Li C, Jiang S Z and Wang Q 2013 arXiv:1304.3881v1
[1]
. [J]. 中国物理快报, 2017, 34(6): 60201-.
[2]
. [J]. 中国物理快报, 2017, 34(6): 60301-.
[3]
. [J]. 中国物理快报, 2016, 33(11): 110203-110203.
[4]
. [J]. 中国物理快报, 2015, 32(11): 111201-111201.
[5]
. [J]. 中国物理快报, 2013, 30(10): 100202-100202.
[6]
. [J]. 中国物理快报, 2013, 30(8): 89801-089801.
[7]
WANG Hua-Wen;CHENG Hong-Bo*
. Virial Relation for Compact Q-Balls in the Complex Signum-Gordon Model [J]. 中国物理快报, 2011, 28(12): 121101-121101.
[8]
ZHANG Zheng-Di;BI Qin-Sheng
. Singular Wave Solutions of Two Integrable Generalized KdV Equations [J]. 中国物理快报, 2010, 27(10): 104702-104702.
[9]
SHI Chang-Guang;HIRAYAMA Minoru;. Exact Bosonic Solutions of the Truncated Skyrme Model [J]. 中国物理快报, 2010, 27(6): 61101-061101.
[10]
SHI Chang-Guang. Geometric Property of the Faddeev Model [J]. 中国物理快报, 2008, 25(3): 881-883.
[11]
KE San-Min;SHI Kang-Jie;WANG Chun;WU Sheng. Flat Currents and Solutions of Sigma Model on Supercoset Targets with Z2m Grading [J]. 中国物理快报, 2007, 24(12): 3374-3377.
[12]
LU Ran;WANG Qing. Equivalence of Different Descriptions for η Particle in Simplest Little Higgs Model [J]. 中国物理快报, 2007, 24(12): 3371-3373.
[13]
WANG Bin;LIU Yu-Xin. Radial Excitations in the Global Colour Soliton Model [J]. 中国物理快报, 2007, 24(8): 2208-2211.
[14]
HU Heng-Chun;ZHU Hai-Dong. New Doubly Periodic Waves of the (2+1)-Dimensional Double Sine-Gordon Equation [J]. 中国物理快报, 2007, 24(1): 1-4.
[15]
DUAN Wen-Shan; CHEN Jian-Hong; YANG Hong-Juan;SHI Yu-Ren; WANG Hong-Yan. Nonlinear Wave in a Disc-Shaped Bose--Einstein Condensate [J]. 中国物理快报, 2006, 23(8): 2000-2003.