The Quark Number Susceptibility of QCD at Finite Temperature and Chemical Potential
ZHU Hui-Xia1,2 , SUN Wei-Min1,3,4 , ZONG Hong-Shi1,3,4
1 Department of Physics, Nanjing University, Nanjing 2100932 The College of Physics and Electronic Information, Anhui Normal University, Wuhu 2410003 Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 2100934 State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
Abstract :We calculate the quark number density and quark number susceptibility (QNS) of QCD at finite chemical potential μ and finite temperature T in the framework of a new nonperturbative QCD model. Analysis and discussions of the calculated results of the QNS are given. It is found that the quark number density has a singularity when μ comes close to a critical value μ 0 , and the QNS χ (μ,T ) becomes discontinuous at some values of T . At high temperature the QNS approaches the free quark gas result, while at very low temperature the QNS equals zero. Importantly, the QNS shows a sudden increase near some temperature (T~ 120 MeV), which may be regarded as the signal of a crossover.
收稿日期: 2012-10-23
出版日期: 2013-05-31
[1] Gottlieb S, Liu W, Toussaint D, Renken R L and Sugar R L 1987 Phys. Rev. Lett. 59 2247 [2] McLerran L 1987 Phys. Rev. D 36 3291 [3] Gavai R V, Potvin J and Sanielevici S 1989 Phys. Rev. D 40 2743 [4] Kunihiro T 1991 Phys. Lett. B 271 395 [5] Jeon S and Koch V 2000 Phys. Rev. Lett. 85 2076 [6] Asakawa M, Heinz U and Müller B 2000 Phys. Rev. Lett. 85 2072 [7] Prakash M et al 2002 Phys. Rev. C 65 034906 [8] Gottlieb S, Liu W, Renken R L, Sugar R L and Toussaint D 1988 Phys. Rev. D 38 2888 [9] Gavai R V and Gupta S 2001 Phys. Rev. D 64 074506 [10] Gavai R V and Gupta S 2002 Phys. Rev. D 65 094515 [11] Gavai R V, Gupta S and Majumdar P 2002 Phys. Rev. D 65 054506 [12] Allton C R, Ejiri S, Hands S J, Kaczmarek O, Karsch F, Laermann E and Schmidt C 2003 Phys. Rev. D 68 014507 [13] Allton C R, D?ring M, Ejiri S, Hands S J, Kaczmarek O, Karsch F, Laermann E and Redlich K 2005 Phys. Rev. D 71 054508 [14] Sasaki C, Friman B and Redlich K 2007 Phys. Rev. D 75 054026 [15] Blaizot J P, Iancu E and Rebhan A 2001 Phys. Lett. B 523 143 [16] Chakraborty P, Mustafa M G and Thoma M H 2002 Eur. Phys. J. C 23 591 [17] Blaizot J P, Iancu E and Rebhan A 2003 Eur. Phys. J. C 27 433 [18] Jiang Y, Zhu H X, Sun W M and Zong H S 2010 J. Phys. G 37 055001 [19] Jiang Y, Li H, Huang S X, Sun W M and Zong H S 2010 J. Phys. G 37 105004 [20] Haque N, Mustafa M G and Thoma M H 2011 Phys. Rev. D 84 054009 [21] He M, He D K, Feng H T, Sun W M and Zong H S 2007 Phys. Rev. D 76 076005 [22] He M, Li J F, Sun W M and Zong H S 2009 Phys. Rev. D 79 036001 [23] He D K, Ruan X X, Jiang Y, Sun W M and Zong H S 2009 Phys. Lett. B 680 432 [24] Sun W M and Zong H S 2007 Int. J. Mod. Phys. A 22 3201 [25] He M, Sun W M, Feng H T and Zong H S 2007 J. Phys. G 34 2655 [26] Zong H S, Chang L et al 2005 Phys. Rev. C 71 015205 [27] Hou F Y, Chang L, Sun W M, Zong H S and Liu Y X 2005 Phys. Rev. C 72 034901 [28] Feng H T, Zong H S et al 2006 Phys. Rev. D 73 016004 [29] Roberts C D and Schmidt S M 2000 Prog. Part. Nucl. Phys. 45 S1-S103 [30] Baschke D, Roberts C D and Schmidt S M 1998 Phys. Lett. B 425 232 [31] Zong H S and Sun W M 2008 Int. J. Mod. Phys. A 23 3591 [32] Bhagwat M S, Pichowsky M A and Tandy P C 2003 Phys. Rev. D 67 054019 [33] Alkofer R, Detmold W, Fischer C S and Maris P 2004 Phys. Rev. D 70 014014 [34] Roberts C D 1996 Nucl. Phys. A 605 475 [35] Larsson T I 1985 Phys. Rev. D 32 956 [36] Kapusta J I 1989 Finite Temperature Field Theory (Cambridge: Cambridge University Press) [37] Zong H S and Sun W M 2008 Phys. Rev. D 78 054001 [38] Yan Y, Cao J, Luo X L, Sun W M and Zong H S 2012 Phys. Rev. D 86 114028 [39] Yan Y, Cao J, Luo X L, Sun W M and Zong H S 2012 Chin. Phys. Lett. 29 101201 [40] Halasz M A et al 1998 Phys. Rev. D 58 096007 [41] Gottlieb S et al 1997 Phys. Rev. D 55 6852 [42] Bernard C et al 1996 Phys. Rev. D 54 4585 [43] Jiang Y, Luo L J and Zong H S 2011 J. High Energy Phys. 1102 066
[1]
. [J]. 中国物理快报, 2022, 39(7): 71201-071201.
[2]
. [J]. 中国物理快报, 2022, 39(4): 41401-041401.
[3]
. [J]. 中国物理快报, 2021, 38(8): 81101-.
[4]
. [J]. Chin. Phys. Lett., 2013, 30(2): 21301-021301.
[5]
. [J]. 中国物理快报, 2012, 29(10): 101201-101201.
[6]
JIA Duo-Jie;WANG Xiao-Wei;LIU Feng
. Analytical Solution for the SU(2) Hedgehog Skyrmion and Static Properties of Nucleons [J]. 中国物理快报, 2010, 27(12): 121201-121201.
[7]
XIANG Wen-Chang;WANG Sheng-Qin;ZHOU Dai-Cui. Hadron Multiplicities in Pb+Pb Collisions at the Large Hadron Collider and Pomeron Loop Effects [J]. 中国物理快报, 2010, 27(7): 72502-072502.
[8]
ZHANG Yan-Bin;SUN Wei-Min;LÜXiao-Fu;ZONG Hong-Shi;. Revisiting Chiral Extrapolation by Studying a Lattice Quark Propagator [J]. 中国物理快报, 2009, 26(8): 81101-081101.
[9]
ZENG Dai-Min;WU Xing-Gang;FANG Zhen-Yun. B-Meson Wavefunction by a Comparative Analysis of the B→π,K Transition Form Factors [J]. 中国物理快报, 2009, 26(2): 21401-021401.
[10]
HE Deng-Ke;JIANG Yu;FENG Hong-Tao;SUN Wei-Min;ZONG Hong-Shi;. Quark-Number Susceptibility at Finite Chemical Potential and Zero Temperature [J]. 中国物理快报, 2008, 25(2): 440-443.
[11]
ZENG Dai-Min;WU Xing-Gang;FANG Zhen-Yun. B→K Transition Form Factor with Tensor Current within the kT Factorization Approach [J]. 中国物理快报, 2008, 25(2): 436-439.
[12]
YANG Shu;GUO Hua;ZHAO En-Guang;Lü Xiao-Fu;. QCD Phase Transitions and Bag Constants at Finite Chemical Potential [J]. 中国物理快报, 2007, 24(11): 3096-3099.
[13]
QIU Cong-Xin;XU Ren-Xin. Colour-Charged Quark Matter in Astrophysics? [J]. 中国物理快报, 2006, 23(12): 3205-3207.
[14]
DONG Yu-Bing. Proton Spin Structure Functions and Quark--Hadron Duality [J]. 中国物理快报, 2006, 23(9): 2383-2386.
[15]
ZONG Hong-Shi;;SUN Wei-Min;;PING Jia-Lun;Lü Xiao-Fu;WANG Fan;. Does There Exist Only One Solution of the Dyson--Schwinger Equation for the Quark Propagator in the Case of Non-Zero Current Quark Mass [J]. 中国物理快报, 2005, 22(12): 3036-3039.