A High Sensitivity Index Sensor Based on Magnetic Plasmon Resonance in Metallic Grating with Very Narrow Slits
XU Bin-Zong, LIU Jie-Tao, HU Hai-Feng, WANG Li-Na, WEI Xin, SONG Guo-Feng**
Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Abstract :The index sensing characteristics of metallic deep gratings are numerically investigated. The concept is based on magnetic polariton resonance, which is very sensitive to changes in the refractive index of the surrounding medium. We numerically demonstrate that the sensitivity and figure of merit of the magnetic plasmon mode can be tailored by adjusting the depth and width of the slits. The highest sensitivity of 1542 nm per refractive index unit with a good figure of merit of 12.3 is obtained. The angle-insensitive property with a high signal intensity of this system could be useful for the future design and application of wide-range sensitive plasmonic index sensors.
收稿日期: 2012-11-28
出版日期: 2013-04-28
:
07.07.Df
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
87.85.fk
(Biosensors)
73.20.Mf
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
42.81.Pa
(Sensors, gyros)
42.90.+m
(Other topics in optics)
[1] Raether H 1988 Surface Plasmons Smooth Rough Surfaces Gratings (Berlin: Springer) [2] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824 [3] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat. Mater. 7 442 [4] Konstantatos G and Sargent E H 2010 Nat. Nanotechnol. 5 391 [5] Lindquist N C, Nagpal P, McPeak K M, Norris D J and Oh S H 2012 Rep. Prog. Phys. 75 36501 [6] Ameling R, Langguth L, Hentschel M, Mesch M, Braun P V and Giessen H 2010 Appl. Phys. Lett. 97 253116 [7] Gan Q, Gao Y and Bartoli F J 2009 Opt. Express 17 20747 [8] Gao Y, Gan Q, Xin Z, Cheng X and Bartoli F J 2011 ACS Nano 5 9836 [9] Grigorenko A N, Gleeson H F, Zhang Y, Roberts N W, Sidorov A R and Panteleev A A 2006 Appl. Phys. Lett. 88 124103 [10] Hao F, Nordlander P, Sonnefraud Y, Van Dorpe P and Maier S A 2009 ACS Nano 3 643 [11] Kubo W and Fujikawa S 2010 Nano Lett. 11 8 [12] Lahav A, Auslender M and Abdulhalim I 2008 Opt. Lett. 33 2539 [13] Larsson E M, Alegret J, K ?ll M and Sutherland D S 2007 Nano Lett. 7 1256 [14] Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, S?nichsen C and Giessen H 2009 Nano Lett. 10 1103 [15] Liu S D, Yang Z, Liu R P and Li X Y 2011 J. Phys. Chem. C 115 24469 [16] Tsai C Y, Lin J W, Wu C Y, Lin P T, Lu T W and Lee P T 2012 Nano Lett. 12 1648 [17] Tsai C Y, Lu S P, Lin J W and Lee P T 2011 Appl. Phys. Lett. 98 153108 [18] Verellen N, Van Dorpe P, Huang C, Lodewijks K, Vandenbosch G A E, Lagae L and Moshchalkov V V 2011 Nano Lett. 11 391 [19] Zhu J H, Huang X G and Mei X 2011 Chin. Phys. Lett. 28 054205 [20] Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 Science 303 1494 [21] Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M and Brueck S R J 2005 Phys. Rev. Lett. 95 137404 [22] Shalaev V M, Cai W S, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P and Kildishev A V 2005 Opt. Lett. 30 3356 [23] Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G and Zhang X 2008 Nature 455 376 [24] Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534 [25] Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N and Zhang X 2007 Phys. Rev. B 76 073101 [26] Liu H, Genov D A, Wu D M, Liu Y M, Steele J M, Sun C, Zhu S N and Zhang X 2006 Phys. Rev. Lett. 97 243902 [27] Tang C J, Zhan P, Cao Z S, Pan J, Chen Z and Wang Z L 2011 Phys. Rev. B 83 041402 [28] Wang S M, Li T, Liu H, Wang F M, Zhu S N and Zhang X 2008 Appl. Phys. Lett. 93 233102 [29] Liu N, Mukherjee S, Bao K, Brown L V, Dorfmüller J, Nordlander P and Halas N J 2011 Nano Lett. 12 364 [30] Zhu Z H, Liu H, Wang S M, Li T, Cao J X, Ye W M, Yuan X D and Zhu S N 2009 Appl. Phys. Lett. 94 103106 [31] Cao J X, Liu H, Li T, Wang S M, Dong Z G and Zhu S N 2010 Appl. Phys. Lett. 97 071905 [32] Wang L P and Zhang Z M 2009 Appl. Phys. Lett. 95 111904 [33] Palik E D 1985 Handbook of Optical Constants of Solids (New York: Academic) [34] Gorelick S, Vila-Comamala J, Guzenko V A and David C 2011 Microelectron. Eng. 88 2259
[1]
. [J]. 中国物理快报, 2021, 38(2): 20502-.
[2]
. [J]. 中国物理快报, 2019, 36(11): 117801-.
[3]
. [J]. 中国物理快报, 2018, 35(10): 107801-.
[4]
. [J]. 中国物理快报, 2017, 34(9): 97302-.
[5]
. [J]. 中国物理快报, 2017, 34(4): 47301-047301.
[6]
. [J]. 中国物理快报, 2016, 33(05): 50701-050701.
[7]
. [J]. 中国物理快报, 2015, 32(12): 128502-128502.
[8]
. [J]. 中国物理快报, 2015, 32(09): 98103-098103.
[9]
. [J]. 中国物理快报, 2015, 32(07): 70701-070701.
[10]
. [J]. 中国物理快报, 2015, 32(07): 78101-078101.
[11]
. [J]. 中国物理快报, 2015, 32(06): 64208-064208.
[12]
. [J]. 中国物理快报, 2015, 32(02): 20701-020701.
[13]
. [J]. 中国物理快报, 2013, 30(10): 100701-100701.
[14]
. [J]. 中国物理快报, 2013, 30(7): 77308-077308.
[15]
. [J]. 中国物理快报, 2013, 30(5): 57301-057301.