Exact Vortex Clusters of Two-Dimensional Quantum Fluid with Harmonic Confinement
CHONG Gui-Shu1**, ZHANG Ling-Ling1, HAI Wen-Hua2
1School of Physics and Microelectronics, Hunan University, Changsha 410082 2Department of Physics and Key Laboratory of Low-Dimensional Quantum Structure and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081
Abstract:A family of exact analytical solutions of vortices in quantum fluid governed by a two-dimensional time-dependent Schr?dinger equation is presented, which describes different kinds of vortex structures. The dynamics of different vortex clusters, such as the single vortex, vortex pair, vortex dipole and vortex trimer in a two-dimensional quantum fluid are analytically studied based on these exact solutions. The time evolutions of the wave of such vortices are demonstrated, and the orbits of motion of singular points in the vortices are also explored. The interactions of vortices in many-vortex clusters are discussed. A repulsive interaction between vortices with the same topological charge, and inter-annihilation and inter-creation of vortices with opposite topological charge, are shown.
[1] Vilenkin A and Shellard E P S 1994 Cosmic Strings and Other Topological Defects (Cambridge: Cambridge University Press) [2] Anderson P W and Itoh N 1975 Nature256 25 [3] Blum T and Moore M A 1995 Phys. Rev. B 51 15359 [4] Swartzlander G A and Law C T 1992 Phys. Rev. Lett.69 2503 [5] Madelung E 1927 Z. Phys.40 322 [6] Wyatt R E 2005 Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (New York: Springer ) [7] Donnelly R J 1991 Quantized Vortices in Helium II (Cambridge: Cambridge University Press ) [8] Vollhardt D and W?lfle P 1990 Superfuid Phase Helium III (London: Taylor and Francis) [9] Parks R D 1969 Superconductivity (New York: Marcel Dekker) [10] Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E and Cornell E A 1999 Phys. Rev. Lett.83 2498 [11] Madison K W, Chevy F, Wohlleben W and DalibardJ 2000 Phys. Rev. Lett.84 806 [12] Anderson B P, Haljan P C, Wieman C E and Cornell E A 2000 Phys. Rev. Lett.85 2857 [13] Abo-Shaeer J R, Raman C, Vogels J M and Ketterle W 2001 Science292 476 [14] Coddington I, Engels P, Schweikhard V and Cornell E A 2003 Phys. Rev. Lett.91 100402 [15] Mateveenko S I 2010 Phys. Rev. A 82 033628 [16] Middelkamp S, Kevrekidis P G, Frantzeskakis D J, Carretero-González R and Schmelcher P 2010 Phys. Rev. A 82 013646 [17] Neely T W, Samson E C, Bradley A S, Davis M J and Anderson B P 2010 Phys. Rev. Lett.104 160401 [18] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 J. Mod. Opt.47 2715 [19] Ramman C, Abo-Shaeer J R, Vogels J M, Xu K and Ketterle W 2001 Phys. Rev. Lett.87 210402 [20] Leanhardt A E, G?rlitz A, Cikkatur A P, Kielpinski D, Shin Y, Pritchard D E and Ketterle W 2002 Phys. Rev. Lett.89 190403 [21] Xiong H, Si L, Ding C, Lü X, Yang X and Wu Y 2012 Phys. Rev. E 85 016602 [22] Fetter A L 1966 Phys. Rev.151 100 [23] Fetter A L 1976 in The Physics of Liquid and SolidHelium ed Bennemann K H and Ketterson J B (New York: Wiley) part 1 [24] Klein A, Jaksch D, Zhang Y and Bao W 2007 Phys. Rev. A 76 043602 [25] Aranson I S, Bishop A R and Kramer L 1998 Phys. Rev. E 57 5276 [26] Chong G, Hai W and Xie Q 2003 Chin. Phys. Lett.20 2098 [27] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys.71 463 Lettgett A J 2001 Rev. Mod. Phys.73 307(and references there in) [28] Hai W, Lee C and Chong G 2004 Phys. Rev. A 70 053621