Particle-in-Cell Simulations of Fast Magnetic Reconnection in Laser-Plasma Interaction
ZHANG Ze-Chen1 , LU Quan-Ming1** , DONG Quan-Li2 , LU San1 , HUANG Can1 , WU Ming-Yu1 , SHENG Zheng-Ming3 , WANG Shui1 , ZHANG Jie3
1 CAS Key Lab of Geoscience Environment, University of Science and Technology of China, Hefei 2300262 School of Physics and Optoelectronic Engineering, Ludong University, Yantai 2640253 Key Laboratory for Laser Plasmas (MoE) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240
Abstract :Recent experiments have observed magnetic reconnection in laser-produced high-energy-density (HED) plasma bubbles. We perform two-dimensional (2-D) particle-in-cell (PIC) simulations to investigate magnetic reconnection between two approaching HED plasma bubbles. It is found that the expanding velocity of the bubbles has a great influence on the process of magnetic reconnection. When the expanding velocity is small, a single X line reconnection is formed. However, when the expanding velocity is sufficiently large, we can observe a plasmoid in the vicinity of the X line. At the same time, the structures of the electromagnetic field in HED plasma reconnection are similar to that in Harris current sheet reconnection.
收稿日期: 2012-10-22
出版日期: 2013-04-28
引用本文:
. [J]. 中国物理快报, 2013, 30(4): 45201-045201.
ZHANG Ze-Chen, LU Quan-Ming, DONG Quan-Li, LU San, HUANG Can, WU Ming-Yu, SHENG Zheng-Ming, WANG Shui, ZHANG Jie. Particle-in-Cell Simulations of Fast Magnetic Reconnection in Laser-Plasma Interaction. Chin. Phys. Lett., 2013, 30(4): 45201-045201.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/30/4/045201
或
https://cpl.iphy.ac.cn/CN/Y2013/V30/I4/45201
[1] Giovanelli R G 1946 Nature 158 81 [2] Masuda S, Kosugi T, Hara H and Ogawara Y 1994 Nature 371 495 [3] Song H Q, Chen Y, Li G, Kong X L and Feng S W 2012 Phys. Rev. X 2 021015 [4] Angelopoulos V, McFadden J P, Larson D, Carlson C W, Mende S B, Frey H, Phan T, Sibeck D G, Glassmeier K H, Auster U, Donovan E, Mann I R, Rae I J, Russell C T, Runov A, Zhou X Z and Kepko L 2008 Science 321 931 [5] Baker D N, Pulkkinen T I, Angelopoulos V, Baumjohann W and McPherron R L 1996 J. Geophys. Res. 101 12975 [6] Nagai T, Fujimoto M, Saito Y, Machida S, Terasawa T, NakamuraR, Yamamoto T, Mukai T, Nishida A and Kokubun S 1998 J. Geophys. Res. 103 4419 [7] Wesson J 1997 Tokamaks (New York: Oxford University Press) [8] Eastwood J P, Brain D A, Halekas J S, Drake J F, Phan T D, Oieroset M, Mitchell D L, Lin R P and Acuna M 2008 Geophys. Res. Lett. 35 L02106 [9] Zhang T L, Lu Q M, Baumjohann W, Russell C T, Fedorov A, Barabash S, Coates A J, Du A M, Cao J B, Nakamura R, Teh W L, Wang R S, Dou X K, Wang S, Glassmeier K H, Auster H U and Balikhin M 2012 Science 336 567 [10] Oieroset M, Phan T D, Fujimoto M, Lin R P and Lepping R P 2001 Nature 412 414 [11] Wang R S, Lu Q M, Guo J and Wang S 2008 Chin. Phys. Lett. 25 3083 [12] Lu Q M, Huang C, Xie J L, Wang R S, Wu M Y, Vaivads A and Wang S 2010 J. Geophys. Res. 115 A11208 [13] Wang R S, Lu Q M, Huang C and Wang S 2010 J. Geophys. Res. 115 A01209 [14] Nagai T, Shinohara I, Fujimoto M, Matsuoka A, Saito Y and Mukai T 2011 J. Geophys. Res. 116 A04222 [15] Ji H T, Yamada M, Hsu S and Kulsrud R 1998 Phys. Rev. Lett. 80 3256 [16] Ono Y, Tanabe H, Li T, Narushima Y, Yamada T, Inomoto M and Cheng C Z 2011 Phys. Rev. Lett. 107 185001 [17] Huang J and Ma Z W 2008 Chin. Phys. Lett. 25 1764 [18] Guo J and Lu Q M 2007 Chin. Phys. Lett. 24 3199 [19] Ren Y, Yamada M, Gerhardt S, Ji H T, Kulsrud R and Kuritsyn A 2005 Phys. Rev. Lett. 95 055003 [20] Malyshkin L 2008 Phys. Rev. Lett. 101 225001 [21] Nilson P M, Willingale L, Kaluza M C et al 2006 Phys. Rev. Lett. 97 255001 [22] Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Landen O L, Knauer J P and Smalyuk V A 2007 Phys. Rev. Lett. 99 055001 [23] Zhong J Y, Li Y T, Wang X G et al 2010 Nat. Phys. 6 984 [24] Dong Q L, Wang S J, Lu Q M et al 2012 Phys. Rev. Lett. 108 215001 [25] Fox W, Bhattacharjee A and Germaschewski K 2011 Phys. Rev. Lett. 106 215003 [26] Fox W, Bhattacharjee A and Germaschewski K 2012 Phys. Plasmas 19 056309 [27] Pritchett P L 2001 J. Geophys. Res. 106 3783 [28] Ma Z W and Bhattacharjee A 2001 J. Geophys. Res. 106 3773 [29] Fu X R, Lu Q M and Wang S 2006 Phys. Plasmas 13 012309 [30] Huang C, Lu Q M and Wang S 2010 Phys. Plasmas 17 072306 [31] Zhou M, Deng X H and Huang S Y 2012 Phys. Plasmas 19 042902 [32] Zhang Q H, Dunlop M W and Lockwood M et al 2012 J. Geophys. Res. 117 A08205
[1]
. [J]. 中国物理快报, 2019, 36(1): 15201-.
[2]
. [J]. 中国物理快报, 2017, 34(2): 25201-025201.
[3]
. [J]. 中国物理快报, 2015, 32(09): 95202-095202.
[4]
. [J]. 中国物理快报, 2015, 32(06): 65201-065201.
[5]
. [J]. 中国物理快报, 2013, 30(12): 125202-125202.
[6]
XU Tao**;HU Qi-Ming;HU Xi-Wei;YU Qing-Quan
. Locking of Tearing Modes by the Error Field [J]. 中国物理快报, 2011, 28(9): 95202-095202.
[7]
GUO Jun;**;YU Bin;GUO Guang-Hai;ZHAO Bo
. Electron Whistler Mode Waves Associated with Collisionless Magnetic Reconnection [J]. 中国物理快报, 2011, 28(2): 25201-025201.
[8]
MA Zhi-Wei;FENG Shu-Ling. Generation of Electric Field and Net Charge in Hall Reconnection [J]. 中国物理快报, 2008, 25(8): 2934-2937.
[9]
HUANG Jun;MA Zhi-Wei. Reconnection Rate in Collisionless Magnetic Reconnection under Open Boundary Conditions [J]. 中国物理快报, 2008, 25(5): 1764-1767.
[10]
GUO Jun;LU Quan-Ming. Effects of Ion-to-Electron Mass Ratio on Electron Dynamics in Collisionless Magnetic Reconnection [J]. 中国物理快报, 2007, 24(11): 3199-3202.
[11]
GUO Jun;LU Quan-Ming;WANG Shui;FU Xiang-Rong. Electron Acceleration in Collisionless Magnetic Reconnection [J]. 中国物理快报, 2005, 22(2): 409-412.
[12]
WANG De-Yu;HUANG Guang-Li;LU Quan-Ming. Effect of Electron Drift Velocity on Whistler Instability in Collisionless Magnetic Reconnection [J]. 中国物理快报, 2004, 21(10): 1997-2000.
[13]
GUO Jun;LU Quan-Ming;WANG Shui;WANG Yu-Ming;DOU Xian-Kang. Whistler Mode Waves in Collisionless Magnetic Reconnection
[J]. 中国物理快报, 2004, 21(7): 1306-1309.
[14]
FAN Quan-Lin;WEI Feng-Si;FENG Xue-Shang. Start-Time of Magnetic Reconnection in Interplanetary Space
[J]. 中国物理快报, 2003, 20(4): 537-540.