A Single Cluster Covering for Dodecagonal Quasiperiodic Ship Tiling
LIAO Long-Guang** , ZHANG Wen-Bin, YU Tong-Xu, CAO Ze-Xian
Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Abstract :The single cluster covering approach provides a plausible mechanism for the formation and stability of octagonal and decagonal quasiperiodic structures. For dodecagonal quasiperiodic patterns, such a single cluster covering scheme is still unavailable. We demonstrate that ship tiling, one of the dodecagonal quasiperiodic structures, can be completely covered by a single cluster. A deflation procedure is devised by assigning proper orientations to different tiles, and nine types of vertex configurations, if the mirror patterns are considered to be identical, have been identified, which fulfill the closure condition under deflation and all result in a T-cluster centered at the vertex.
收稿日期: 2012-10-16
出版日期: 2013-03-02
[1] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951 [2] Levine D and Steinhardt P J 1984 Phys. Rev. Lett. 53 2477 [3] Wang N, Chen H and Kuo K H 1987 Phys. Rev. Lett. 59 1010 [4] Bendersky L 1985 Phys. Rev. Lett. 55 1461 [5] Ishimasa T, Nissen H U and Fukano Y 1985 Phys. Rev. Lett. 55 511 [6] Penrose R 1974 Bull. Inst. Math. Appl. 10 266 [7] Gummelt P 1996 Geom. Dedic. 62 1 [8] Jeong H C and Steinhardt P J 1997 Phys. Rev. B 55 3520 [9] Jeong H C and Steinhardt P J 1994 Phys. Rev. Lett. 73 1943 [10] Steinhardt P J, Jeong H C, Saitoh K et al 1998 Nature 396 55 [11] Ben-Abraham S I and G?hler F 1999 Phys. Rev. B 60 860 [12] Ben-Abraham S I, Gummelt P, Lück R and G?hler F 2001 Ferroelectrics 250 313 [13] Liao L G, Fu H and Fu X J 2009 Acta Phys. Sin. 58 7088 (in Chinese) [14] Fu H, Liao L G and Fu X J 2009 Chin. Phys. Lett. 26 056103 [15] Stampfli P 1986 Helv. Phys. Acta 59 1260 [16] G?hler F 1988 Quasicrystalline Materials ed Janot C and Dubois J M (Singapore: World Scientific) p 272 [17] Socolar J E S 1989 Phys. Rev. B 39 10519
[1]
. [J]. 中国物理快报, 2019, 36(3): 36101-.
[2]
. [J]. 中国物理快报, 2018, 35(6): 66101-.
[3]
. [J]. 中国物理快报, 2016, 33(04): 46401-046401.
[4]
. [J]. 中国物理快报, 2015, 32(5): 56101-056101.
[5]
. [J]. 中国物理快报, 2015, 32(03): 36102-036102.
[6]
CHEN Zhi-Wei,FU Xiu-Jun**. Quasicrystalline Phase with Eighteen-Fold Diffraction Symmetry in Molecular Dynamics Simulations [J]. 中国物理快报, 2012, 29(5): 50204-050204.
[7]
WEN Zhang-Bin;HOU Zhi-Lin;FU Xiu-Jun**
. Monte Carlo Simulation of the Potts Model on a Dodecagonal Quasiperiodic Structure [J]. 中国物理快报, 2011, 28(4): 46102-046102.
[8]
FU Hong;LIAO Long-Guang;FU Xiu-Jun. Covering Rules and Nearest Neighbour Configurations of the Dodecagonal Quasiperiodic Structure [J]. 中国物理快报, 2009, 26(5): 56103-056103.
[9]
LIAO Long-Guang;FU Xiu-Jun;HOU Zhi-Lin. Configurations and Self-similar Transformation of Octagonal Quasilattice [J]. 中国物理快报, 2008, 25(12): 4336-4338.
[10]
WANG Jian-Bo;MA Jia-Yan;LU Lu;XIONG Dong-Xia;ZHAO Dong-Shan;WANG Ren-Hui. Plastic Deformation of Fine-Grained Al--Cu--Fe--(B) Icosahedral Poly- Quasicrystals at Elevated Temperature [J]. 中国物理快报, 2007, 24(8): 2331-2334.
[11]
LI Lian-He;FAN Tian-You. Final Governing Equation of Plane Elasticity of Icosahedral Quasicrystals and General Solution Based on Stress Potential Function [J]. 中国物理快报, 2006, 23(9): 2519-2521.
[12]
ZHANG Yong-Gang;JIANG Xun-Ya;ZHU Cheng;GU Yi;LI Ai-Zhen;QI Ming;FENG Song-Lin. Growth and Characterization of GaAs/AlGaAs Thue--Morse Quasicrystal Photonic Bandgap Structures [J]. 中国物理快报, 2005, 22(5): 1191-1194.
[13]
ZHOU Xiang;HU Cheng-Zheng;GONG Ping;ZHU Jia-Kun. Linear and Nonlinear Optical Properties of Quasicrystals [J]. 中国物理快报, 2004, 21(1): 140-142.
[14]
WANG Xiao-Dong;QI Min;DONG Chuang;. Bergman Clusters Related to Bulk Amorphous Alloys and Quasi-crystals [J]. 中国物理快报, 2003, 20(6): 891-893.
[15]
HOU Zhi-Lin;FU Xiu-Jun;LIU You-Yan. Electronic Transmission Properties of Two-Dimensional Quasi-lattice [J]. 中国物理快报, 2002, 19(2): 236-239.