Collisions between Solitons Modulated by Gain/Loss and Phase in the Complex Ginzburg–Landau Equation
LIU Bin** , HE Xing-Dao, LI Shu-Jing
Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063
Abstract :We present a systematic analysis for influence of phase φ on collisions of dissipative solitons, using the cubic-quintic complex Ginzburg–Landau equation in the absence of viscosity. Four generic outcomes are revealed upon the variation of gain/loss: merger of the two solitons into a single one; quasi-elastic interactions; creation of an extra soliton; and dissipation of the two solitons for in-phase. The velocities of the merger-soliton and the extra soliton can be effectively controlled by relative phase. The above features have potential applications in optical switching and logic gates based on interaction of optical solitons.
收稿日期: 2012-11-07
出版日期: 2013-03-02
:
42.65.Tg
(Optical solitons; nonlinear guided waves)
05.45.-a
(Nonlinear dynamics and chaos)
[1] Aranson S and Kramer L 2002 Rev. Mod. Phys. 74 99 [2] Rosanov N, Akhmediev N and Ankievicz A 2005 Dissipative Solitons (Berlin: Springer-Verlag) [3] Malomed B A 2005 Encyclopedia of Nonlinear Science (New York: Routledge) [4] Bakonyi Z, Michaelis D, Peschel U, Onishchukov G and Lederer F 2002 J. Opt. Soc. Am. B 19 487 [5] Ultanir E A, Stegeman G I, Michaelis D, Lange C H and Lederer F 2003 Phys. Rev. Lett. 90 253903 [6] Rosanov N N 2002 Spatial Hysteresis and Optical Patterns (Berlin: Springer) [7] Petviashvili V I and Sergeev A M 1984 Dokl. Akad. Nauk SSSR 276 1380 [8] Soto-Crespo J M, Akhmediev N and Ankiewicz A 2000 Phys. Rev. Lett. 85 2937 [9] Boudebs G, Cherukulappurath S, Leblond H, Troles J, Smektala F and Sanchez F 2003 Opt. Commun. 219 427 [10] Zhan C, Zhang D, Zhu D, Wang D, Li Y, Li D, Lu Z, Zhao L and Nie Y 2002 J. Opt. Soc. Am. B 19 369 [11] Mihalache D, Mazilu D, Lederer F, Kartashov Y V, Crasovan L C, Torner L and Malomed B A 2006 Phys. Rev. Lett. 97 073904 [12] Vladimirov A G, McSloy J M, Skryabin D V and Firth W J 2002 Phys. Rev. E 65 046606 [13] Skryabin D V and Vladimirov A G 2002 Phys. Rev. Lett. 89 044101 [14] He Y J, Malomed B A and Wang H Z 2007 Opt. Express 15 17502 [15] Liu B, He Y J, Qiu Z R and Wang H Z 2009 Opt. Express 17 12203 [16] Liu B, He Y J, Malomed B A, Wang X S, Kevreids P G, Wang T B, Leng F C, Qiu Z R and Wang H Z 2010 Opt. Lett. 35 1974 [17] Liu B and He X D 2011 Opt. Express 19 20009 [18] Wu Y D 2004 Opt. Express 14 4005 [19] Wu Y D 2004 Opt. Express 12 4172 [20] Wu Y D 2005 IEEE J. Sel. Top. Quantum. Electron. 11 307 [21] Wu Y D 2005 Appl. Opt. 44 4144 [22] Mihalache D, Mazilu D, Lederer F, Leblond H and Malomed B A 2008 Phys. Rev. A 77 033817 [23] Mihalache D, Mazilu D, Lederer F, Leblond H and Malomed B A 2008 Phys. Rev. E 78 056601 [24] Mihalache D, Mazilu D, Lederer F, Leblond H and Malomed B A 2009 Eur. Phys. J. Spec. Top. 173 245 [25] Wainblat G and Malomed B A 2009 Physica D 238 1143 [26] Mihalache D, Mazilu D and Lederer F 2010 Cent. Eur. J. Phys. 8 77 [27] Lega J, Moloney J V and Newell A C 1994 Phys. Rev. Lett. 73 2978
[1]
. [J]. 中国物理快报, 2022, 39(11): 114202-.
[2]
. [J]. 中国物理快报, 2022, 39(9): 94201-094201.
[3]
. [J]. 中国物理快报, 2022, 39(4): 44202-.
[4]
. [J]. 中国物理快报, 2022, 39(3): 34202-.
[5]
. [J]. 中国物理快报, 2022, 39(2): 20501-.
[6]
. [J]. 中国物理快报, 2022, 39(1): 10501-.
[7]
. [J]. 中国物理快报, 2021, 38(9): 90501-.
[8]
. [J]. 中国物理快报, 2021, 38(9): 94201-.
[9]
. [J]. 中国物理快报, 0, (): 64202-.
[10]
. [J]. 中国物理快报, 2020, 37(6): 64202-.
[11]
. [J]. 中国物理快报, 2020, 37(5): 50502-.
[12]
. [J]. 中国物理快报, 2020, 37(4): 40502-.
[13]
. [J]. 中国物理快报, 2019, 36(5): 50501-.
[14]
. [J]. 中国物理快报, 2019, 36(4): 40501-.
[15]
. [J]. 中国物理快报, 2019, 36(1): 14203-.