Dynamic Characteristics of Gas Transport in Nanoporous Media
SONG Hong-Qing** , YU Ming-Xu, ZHU Wei-Yao, ZHANG Yu, JIANG Shan-Xue
School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083
Abstract :Special flow mechanism and percolation characteristics for gas transport are presented in nanoporous media, which cannot be explained by the traditional motion equation of Darcy's law. On the basis of theoretical analysis, we establish a low velocity nonlinear transfer equation of gas in nanoporous media and a mathematical model of gas volume flow in multi-scale porous media. By utilizing nonlinear numerical calculation methodology, a detailed quantitative analysis of the diffusion and convective rate of gas flow is presented, providing a theoretical foundation for the development of nanoporous media.
收稿日期: 2012-10-20
出版日期: 2013-03-04
:
47.10.-g
(General theory in fluid dynamics)
47.55.Ca
(Gas/liquid flows)
47.56.+r
(Flows through porous media)
47.61.-k
(Micro- and nano- scale flow phenomena)
[1] Xu W W et al 2010 Chin. Phys. Lett. 27 038202 [2] Fu X N and Li X J 2006 Chin. Phys. Lett. 23 2172 [3] Xu H J, Chan Y F and Su L 2011 Chin. Phys. B 20 107801 [4] Yao Z T et al 2007 Chin. Phys. 16 3108 [5] Yan G J, Chen G D and Wu Y L 2009 Chin. Phys. B 18 2925 [6] Michel G G et al 2011 SPE Annual Technical Conference and Exhibition (Denver, Colorado, USA 30 October–2 November 2011) [7] Zhu W Y et al 2011 Energy Fuels 25 1111 [8] Song H Q et al 2010 Pet. Sci. Technol. 28 1700 [9] Tambch T J, Mathews J P and Van B F 2009 Energy Fuels 23 4845 [10] Cao B Y, Chen M and Guo Z Y 2004 Chin. Phys. Lett. 21 1777 [11] Fan A F 1991 Chin. Phys. Lett. 8 566 [12] Yuan M J et al 2011 Acta Phys. Sin. 60 024703 (in Chinese)[13] Cai J C et al 2010 Chin. Phys. Lett. 27 124501 [14] Liu C F and Ni Y S 2008 Chin. Phys. B 17 4554 [15] Freeman C M, Moridis G J and Blasingame T A 2011 Transp. Porous Med. 90 253 [16] Li M J and Chen L 2011 Chin. Phys. Lett. 28 085203 [17] Tan Y L, Teng G R and Zhang Z 2010 Chin. Phys. Lett. 27 014701 [18] Li X H et al 2006 Chin. Phys. Lett. 23 1230 [19] Song F Q, Jiang R J and Bian S H L 2007 Chin. Phys. Lett. 24 3520 [20] Javadpour F, Fisher D and Unsworth M 2007 J. Can. Pet. Technol. 46 55 [21] Veldsink J W et al 1995 Chem. Eng. J. 57 115
[1]
. [J]. 中国物理快报, 2020, 37(3): 34201-.
[2]
. [J]. 中国物理快报, 2013, 30(10): 100201-100201.
[3]
Arbab I. Arbab;Hisham. M. Widatallah. On the Generalized Continuity Equation [J]. 中国物理快报, 2010, 27(8): 84703-084703.
[4]
S. Nadeem;Noreen Sher Akbar. Simulation of the Second Grade Fluid Model for Blood Flow through a Tapered Artery with a Stenosis [J]. 中国物理快报, 2010, 27(6): 68701-068701.
[5]
TAN Yun-Liang;TENG Gui-Rong;ZHANG Ze. A Modified LBM Model for Simulating Gas Seepage in Fissured Coal Considering Klinkenberg Effects and Adsorbability-Desorbability [J]. 中国物理快报, 2010, 27(1): 14701-014701.
[6]
XIA Yong;LU De-Tang;LIU Yang;XU You-Sheng. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder [J]. 中国物理快报, 2009, 26(3): 34702-034702.
[7]
LI Hua-Bing;JIN Li;QIU Bing. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice [J]. 中国物理快报, 2008, 25(11): 4042-4045.
[8]
LIU Ping;LOU Sen-Yue;. A (2+1)-Dimensional Displacement Shallow Water Wave System [J]. 中国物理快报, 2008, 25(9): 3311-3314.