Abstract:The method of multiple time scales is used to obtain the asymptotic solutions to the planar and non-planar flows into a non-ideal gas. The transport equations for the amplitudes of resonantly interacting high frequency waves are also found. Furthermore, the evolutionary behavior of non-resonant wave modes culminating into shock waves is studied.
. [J]. Chin. Phys. Lett., 2012, 29(12): 120202-120202.
Rajan Arora, Mohd. Junaid Siddiqui, V. P. Singh. Wave Interaction and Resonance in a Non-Ideal Gas. Chin. Phys. Lett., 2012, 29(12): 120202-120202.
[1] Blythe P A 1969 J. Fluid Mech.37 31 [2] Ockendon H and Spence D A 1969 J. Fluid Mech.39 329 [3] Chu B T 1970 Weak Nonlinear Waves in Nonequilibrium Flow in Nonequilibrium Flows ed Wegener P P (New York: Marcel Dekker) vol I part II [4] Parker D F 1972 Phys. Fluids15 256 [5] Becker E 1972 Ann. Rev. Fluid Mech.4 155 [6] Clarke J F and McChesney A 1976 Dynamics of Relaxing Gases (London: Butterworth) [7] Clarke J F 1984 Ann. Phys. France9 211 [8] Whitham G B 1974 Linear and Nonlinear Waves (New York: Wiley) [9] Sharma V D 2010 Quasilinear Hyperbolic Systems, Compressible Flows and Waves (Boca Raton: Chapman & Hall CRC) Press [10] He Y and Moodie T B 1993 Stud. Appl. Math.88 241 [11] He Y and Moodie T B 1995 Appl. Anal.57 145 [12] Sharma V D and Srinivasan G K 2005 Int. J. Non-linear Mech.40 1031 [13] Arora R et al 2009 Shock Waves19 145 [14] Arora R 2009 J. Math. Model. Anal.14 423 [15] Choquet-Bruhat V 1969 J. Math. Pure Appl.48 119 [16] Germain P 1971 Progressive Waves 14th Prandtl Memorial Lecture (Jarbuch der DGLR) p 11 [17] Hunter J K and Keller J 1983 Commun. Pure Appl. Math.36 547 [18] Majda A and Rosales R 1984 Stud. Appl. Math.71 149 [19] Hunter J K et al 1986 Stud. Appl. Math.75 187