Kaluza–Klein Corrections to the μ Anomalous Magnetic Moment in the Appelquist–Cheng–Dobrescu Model
CHEN Jian-Bin, FENG Tai-Fu, GAO Tie-Jun
Department of Physics, Dalian University of Technology, Dalian 116024
Abstract :Applying the effective Lagrangian method, we analyze the radiative contributions of the Kaluza–Klein (KK) modes to the muon magnetic dipole moments in the Appelquist–Cheng–Dobrescu model. Summing over the infinite series composed by the KK towers, we verify the final results satisfying the decoupling theorem in the limit R ?1 →∞. For the compactification scale R ?1 =300 GeV, we obtain the electroweak radiative corrections from the KK modes to the muon MDM amount to 6.72×10?12 at one loop level.
收稿日期: 2012-05-07
出版日期: 2012-10-01
[1] Muon g-2 Collaboration 2004 Phys. Rev. Lett. 92 161802 [2] Czarnecki A, Krause B and Marciano W J 1995 Phys. Rev. D 52 R2619 [3] Andreas H 2011 Nucl. Phys. Proc. Suppl. 218 189 [4] Fujikawa K, Lee B W and Sanda A I 1972 Phys. Rev. D 6 2923 [5] Altarelli G, Cabbibo N and Maiani L 1972 Phys. Lett. B 40 415 [6] Bars I and Yoshimura M 1972 Phys. Rev. D 6 374 [7] Bardeen W A, Gastmans R and Lautrup B E 1972 Nucl. Phys. B 46 319 [8] Miller J P, Rafael E D and Roberts B L 2007 Rep. Prog. Phys. 70 795 [9] Jegerlehner F 2007 Acta. Phys. Polon. B 38 3021 [10] Marciano W J 1999 Phys. Rev. D 60 093006 [11] Nath P and Yamaguchi M 1999 Phys. Rev. D 60 116004 [12] Masip M and Pomarol A 1999 Phys. Rev. D 60 096005 [13] Rizzo T G and Wells J D 1999 Phys. Rev. D 61 016007 [14] Abbott L F 1981 Nucl. Phys. B 185 189 [15] Gavela M B, Girardi G, Malleville C and Sorba P 1981 Nucl. Phys. B 193 257 [16] Deshpande N G and Nayerimonfared M 1983 Nucl. Phys. B 213 390 [17] Appelquist T and Dobrescu B A 2001 Phys. Lett. B 516 85 [18] Appelquist T, Cheng H C and Dobrescu B A 2001 Phys. Rev. D 64 035002 [19] Buras A J, Spranger M and Weiler A 2003 Nucl. Phys. B 660 225 [20] Feng T F and Yang X Y 2009 Nucl. Phys. B 814 101 [21] Arrenberg S et al 2008 Phys. Rev. D 78 056002 [22] Bertone G et al 2011 Phys. Rev. D 83 036008 [23] Bhattacherjee B and Ghosh K 2011 Phys. Rev. D 83 034003 [24] Murayama H, Nojiri M M and Tobioka K 2011 Phys. Rev. D 84 094015 [25] Datta A et al 2012 Phys. Lett. B 712 219 [26] Buras A J et al 2004 Nucl. Phys. B 678 455 [27] Haisch U and Weiler A 2007 Phys. Rev. D 76 034014 [28] Colangelo P et al 2006 Phys. Rev. D 73 115006 [29] Colangelo P et al 2006 Phys. Rev. D 74 115006 [30] Aliev T M and Savci M 2007 Eur. Phys. J. C 50 91 [31] Appelquist T and Yee H U 2003 Phys. Rev. D 67 055002 [32] Gogoladze I and Macesanu C 2006 Phys. Rev. D 74 093012 [33] Baak M et al 2012 Eur. Phys. J. C 72 2003 [34] Huang G Y et al 2012 J. High Energy Phys. 2012 099 [35] Moroi T 1996 Phys. Rev. D 53 6565 [36] Moroi T 1997 Phys. Rev. D 56 4424 [37] Heinemeyer S, Stockinger D and Weiglein G 2004 Nucl. Phys. B 690 62 [38] Heinemeyer S, Stockinger D and Weiglein G 2004 Nucl. Phys. B 699 103
[1]
. [J]. 中国物理快报, 2017, 34(6): 61101-.
[2]
. [J]. 中国物理快报, 2015, 32(11): 111102-111102.
[3]
. [J]. Chin. Phys. Lett., 2012, 29(11): 111101-111101.
[4]
MU Ben-Rong;WU Hou-Wen**;YANG Hai-Tang
. Generalized Uncertainty Principle in the Presence of Extra Dimensions [J]. 中国物理快报, 2011, 28(9): 91101-091101.
[5]
ZHOU Yu-Qing**;YANG Yong-Hong
. Peak of Chiral Susceptibility and Chiral Phase Transition in QED3 [J]. 中国物理快报, 2011, 28(4): 41101-041101.
[6]
CHENG Hong-Bo. The Casimir Force between Parallel Plates in Randall--Sundrum I Model [J]. 中国物理快报, 2010, 27(3): 31101-031101.
[7]
HU Fei;JIANG Yu;FENG Hong-Tao;SUN Wei-Min;ZONG Hong-Shi;. Calculation of Particle-Number Susceptibility of QED3 at Finite Temperature [J]. 中国物理快报, 2008, 25(8): 2823-2826.
[8]
CHENG Hong-Bo. Casimir Effect at Finite Temperature in the Presence of Compactified Universal Extra Dimensions [J]. 中国物理快报, 2005, 22(12): 3032-3035.
[9]
DUAN Yi-Shi;ZHONG Wo-Jun;SI Tie-Yan. Self-Dual Chern--Simons Vortices in Higgs Field [J]. 中国物理快报, 2005, 22(10): 2462-2464.
[10]
CHENG Hong-Bo. Casimir effect for a Cavity in the Spacetime with an Extra Dimension [J]. 中国物理快报, 2005, 22(9): 2190-2193.
[11]
WEN Hai-Bao;HUANG Xin-Bing. Dark Energy Density in Brane World [J]. 中国物理快报, 2005, 22(4): 816-819.
[12]
CHEN Chi-Yi;SHEN You-Gen;. Extra Dimensions and Vacuum Dark Energy Models [J]. 中国物理快报, 2004, 21(11): 2320-2322.
[13]
SHEN Yougen;CHENG Zongyi;SU Ruking. Wormholes with the Topology of R1 ⊗ S3 ⊗ Td in Higher Order Gravitational Theory
[J]. 中国物理快报, 1993, 10(10): 585-587.
[14]
LI Xinzhou;ZHONG Yu*. WORMHOLE AND THE DIMENSIONALITY OF SPACETIME IN EINSTEIN-GAUGE THEORIES
[J]. 中国物理快报, 1990, 7(6): 248-251.