Multiple Modes of Filament Flapping in a Uniform Flow
GAO Hao-Tian1 , QIN Feng-Hua1** , HUANG Wei-Xi2 , SUN De-Jun1
1 Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026 2 Department of Engineering Mechanics, Tsinghua University, Beijing 100084
Abstract :The instability of a flexible filament immersed in uniform flow is studied. A numerical simulation based on the immersed boundary method is conducted on a two-dimensional uniform flow past a flapping filament. Different from the conventional bistability behavior, more regions of initial states of filament corresponding to different modes of motion are partitioned at each freestream velocity, and a new stable mode of motion with smaller flapping amplitude is observed. Mode selection highly depends on these initial states.
收稿日期: 2012-04-01
出版日期: 2012-10-01
:
47.11.-j
(Computational methods in fluid dynamics)
46.40.Jj
(Aeroelasticity and hydroelasticity)
[1] Rayleigh L 1878 Proc. Lond. Math. Soc. s1-10 4 [2] Connell B, Yue D 2007 J. Fluid Mech. 581 33 [3] Shelley M J and Zhang J 2011 Ann. Rev. Fluid Mech. 43 449 [4] Zhang J, Childress S, Libchaber A and Shelley M 2000 Nature 408 835 [5] Watanabe Y, Suzuki S, Sugihara M and Sueoka Y 2002 J. Fluids Struct. 16 529 [6] Shelley M, Vandenberghe N and Zhang J 2005 Phys. Rev. Lett. 94 094302 [7] Eloy C, Lagrange R, Souilliez C and Schouveiler L 2008 J. Fluid Mech. 611 97 [8] Tang D M, Yamamoto H and Dowell E H 2003 J. Fluids Struct. 17 225 [9] Abderrahmane H A, Paidoussis M P, Fayed M and Ng H D 2011 Phys. Rev. E 84 066604 [10] Eloy C, Kofman N and Schouveiler L 2012 J. Fluid Mech. 691 583 [11] Zhu L D and Peskin C 2003 Phys. Fluids 15 1954 [12] Zhu L D and Peskin C 2002 J. Comput. Phys. 179 452 [13] Alben S and Shelley M J 2008 Phys. Rev. Lett. 100 074301 [14] Michelin S, Smith S G L and Glover B J 2008 J. Fluid Mech. 617 1 [15] Huang W X, Shin S J and Sung H J 2007 J. Comput. Phys. 226 2206 [16] Qin F H, Huang W X and Sung H J 2012 Comput. Fluids 55 109 [17] Huang W X and Sung H J 2010 J. Fluid Mech. 653 301 [18] Kim S, Huang W X and Sung H J 2010 J. Fluid Mech. 661 511
[1]
. [J]. 中国物理快报, 2018, 35(10): 108101-.
[2]
. [J]. 中国物理快报, 2015, 32(06): 68103-068103.
[3]
. [J]. 中国物理快报, 2014, 31(1): 14701-014701.
[4]
. [J]. 中国物理快报, 2013, 30(9): 94703-094703.
[5]
. [J]. 中国物理快报, 2013, 30(7): 74702-074702.
[6]
. [J]. 中国物理快报, 2013, 30(6): 64701-064701.
[7]
. [J]. 中国物理快报, 2012, 29(9): 94703-094703.
[8]
. [J]. 中国物理快报, 2012, 29(8): 84703-084703.
[9]
WEI Yi-Kun, QIAN Yue-Hong. Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations [J]. 中国物理快报, 2012, 29(6): 64705-064705.
[10]
TAO Yu-Jia;HUAI Xiu-Lan;LI Zhi-Gang. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film [J]. 中国物理快报, 2009, 26(7): 74701-074701.
[11]
XIA Yong;LU De-Tang;LIU Yang;XU You-Sheng. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder [J]. 中国物理快报, 2009, 26(3): 34702-034702.
[12]
LI Hua-Bing;JIN Li;QIU Bing. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice [J]. 中国物理快报, 2008, 25(11): 4042-4045.
[13]
RAO Yong;NI Yu-Shan;LIU Chao-Feng. Multi-Bifurcation Effect of Blood Flow by Lattice Boltzmann Method [J]. 中国物理快报, 2008, 25(11): 4038-4041.
[14]
Rafael Cortell. A Numerical Tackling on Sakiadis Flow with Thermal Radiation [J]. 中国物理快报, 2008, 25(4): 1340-1342.
[15]
TAN Xin-Yu;ZHANG Duan-Ming;FENG Sheng-Qin;LI Zhi-Hua;LIU Gao-Bin;FANG Ran-Ran;SUN Min. A New Dynamics Expansion Mechanism for Plasma during Pulsed Laser Deposition [J]. 中国物理快报, 2008, 25(1): 198-201.