A Statistical Model for Predicting Thermal Chemical Reaction Rate: Application to Bimolecule Reactions
LI Wang-Yao1,2 , LIN Zheng-Zhe3,4 , XU Jian-Jun1,2 , NING Xi-Jing3,4**
1 Department of Physics, Fudan University, Shanghai 200433 2 State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433 3 Institute of Modern Physics, Fudan University, Shanghai 200433 4 Key Laboratory of Applied Ion Beam Physics (Ministry of Education), Fudan University, Shanghai 200433
Abstract :A model based on the statistics of individual atoms [Europhys. Lett. 94 (2011) 40002], which has been successfully applied to predict the rate constant of unimolecular reactions, was further extended to bimolecular reactions induced by collisions. Compared with the measured rate constants of the reactions S+SO2 →SO+SO and NH3 +Cl→NH2 +HCl, the model is proved to be significantly better than conventional transition state theory. In order to strictly test the model, we perform molecular dynamics simulation of C60 +C60 →C120 , and show that the rate constants are in excellent agreement with our model but far away from the transition state theory.
收稿日期: 2012-04-24
出版日期: 2012-07-31
:
05.20.Dd
(Kinetic theory)
34.50.Lf
(Chemical reactions)
71.15.Pd
(Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)
[1] Lin Z Z, Yu W F, Wang Y and Ning X J 2011 Europhys. Lett. 94 40002 [2] Lin Z Z, Li W Y and Ning X J 2012 Chem. Phys. Chem. (submitted) [3] Yu W F, Lin Z Z and Ning X J 2012 Appl. Phys. Lett. (submitted) [4] Lewis W C McC 1918 J. Chem. Soc. 113 471 [5] Upadhyay S K 2006 Chemical Kinetics and Reaction Dynamics (New York: Springer) [6] Eyring H 1935 J. Chem. Phys. 3 107 [7] Evans M G and Polanyi M 1935 Trans. Faraday Soc. 31 875 [8] Murakami Y, Onishi S, Kobayashi T, Fujii N, Isshiki N, Tsuchiya K, Tezaki A and Matsui H 2003 J. Phys. Chem. A 107 10996 [9] Gao Y D, Alecu I M, Hsieh P C, Morgan B P, Marshall P and Krasnoperov L N 2006 J. Phys. Chem. A 110 6844 [10] Xu Z F and Lin M C 2007 J. Phys. Chem. A 111 584 [11] Truhlar D and Garrett B 1980 Acc. Chem. Res. 13 440 [12] Quack M and Troe J 1974 Ber. Bunsen-Ges. Phys. Chem. 78 240 [13] Quack M and Troe J 1975 Ber. Bunsen-Ges. Phys. Chem. 79 170 [14] Quack M and Troe J 1975 Ber. Bunsen-Ges. Phys. Chem. 79 469 [15] Georgievskii Y and Klippenstein S J 2005 J. Chem. Phys. 122 194103 [16] Kohen A, Cannio R, Bartolucci S and Klinman J P 1999 Nature 399 496 [17] Basran J, Sutcliffe M J and Scrutton N S 1999 Biochemistry 38 3218 [18] Marcus R A 2006 J. Chem. Phys. 125 194504 [19] Clary D C 2008 Science 321 789 [20] Hu W and Schatz G C 2006 J. Chem. Phys. 125 132301 [21] Miller W H 1974 Adv. Chem. Phys. 25 69 [22] Miller W H 2001 J. Phys. Chem. 105 2707 [23] Tromp J W and Miller W H 1986 J. Phys. Chem. 90 3482 [24] MillerW H, Zhao Y, Ceotto M and Yang S 2003 J. Chem. Phys. 119 1329 [25] Schubert R, Waalkens H and Wiggins S 2009 Few-Body Syst. 45 203 [26] Buchowiecki M and Vanicek J 2010 J. Chem. Phys. 132 194106 [27] Brenner D W 1990 Phys. Rev. B 42 9458 [28] Halicioglu T 1991 Chem. Phys. Lett. 179 159 [29] Gao J, Lin Z Z and Ning X J 2007 J. Chem. Phys. 126 174309
[1]
. [J]. 中国物理快报, 2017, 34(2): 20502-020502.
[2]
. [J]. 中国物理快报, 2013, 30(11): 110503-110503.
[3]
. [J]. Chin. Phys. Lett., 2012, 29(12): 128103-128103.
[4]
LI Rui**;ZHANG Duan-Ming;LI Zhi-Hao. Size Segregation in Rapid Flows of Inelastic Particles with Continuous Size Distributions [J]. 中国物理快报, 2012, 29(1): 10503-010503.
[5]
LI Rui**;ZHANG Duan-Ming;LI Zhi-Hao
. Velocity Distributions in Inelastic Granular Gases with Continuous Size Distributions [J]. 中国物理快报, 2011, 28(9): 90506-090506.
[6]
CHEN Zhi-Yuan;ZHANG Duan-Ming. Effects of Fractal Size Distributions on Velocity Distributions and Correlations of a Polydisperse Granular Gas [J]. 中国物理快报, 2008, 25(5): 1583-1586.
[7]
LI Rui;ZHANG Duan-Ming;CHEN Zhi-Yuan;SU Xiang-Ying;ZHU Hong-Ying;ZHANG Ling;HUANG Ming-Tao. Effects of Continuous Size Distributions on Pressures of Granular Gases [J]. 中国物理快报, 2007, 24(6): 1482-1485.
[8]
XU You-Sheng;WU Feng-Min;. A New Method for the Analysis of Relative Permeability in Porous
Media [J]. 中国物理快报, 2002, 19(12): 1835-1837.
[9]
BI Qiao;;H. E. Ruda. Schrödinger Equation for an Open System [J]. 中国物理快报, 2002, 19(9): 1238-1241.
[10]
ZHANG Chao;ZHENG Xiao-Ping;LI Jia-Rong. Colour Conductivity of a Quark Plasma at Finite Chemical Potential [J]. 中国物理快报, 2002, 19(7): 912-914.
[11]
FENG Shi-De;ZHAO Ying;GAO Xian-Lin;JI Zhong-Zhen. Lattice Boltzmann Numerical Simulation of a Circular Cylinder [J]. 中国物理快报, 2002, 19(6): 814-817.
[12]
FENG Shi-De;YANG Jing-Long;GAO Xian-Lin;JI Zhong-Zhen. Lattice Boltzmann Model and Geophysical Hydrodynamic Equation [J]. 中国物理快报, 2002, 19(3): 358-361.
[13]
FENG Shi-De;REN Rong-Cai;JI Zhong-Zhen. Heat Flux Boundary Conditions for a Lattice Boltzmann Equation Model [J]. 中国物理快报, 2002, 19(1): 79-82.
[14]
ZHENG Xiao-Ping;LI Jia-Rong. Covariant Perturbation Theory of Non-Abelian Kinetic Theory [J]. 中国物理快报, 2002, 19(1): 23-25.
[15]
LÜXian-qing. Exact Travelling Wave Solutions of Discrete Planar Velocity Boltzmann Models [J]. 中国物理快报, 1997, 14(8): 561-564.