摘要The solid phase reactions of Ni with GaAs substrates are investigated. The experimental results reveal that the Ni-GaAs solid phase reaction forms a ternary phase of Ni2GaAs when annealing temperatures are in the range 250–300°C. As the annealing temperature increases to 400°C, the Ni2GaAs phase starts to decompose due to NiAs phase precipitation. Ni−GaAs alloys processed at 400°C with a 3 min annealing time demonstrate a sheet resistance of 30 Ω/square after unreacted Ni removal in hot diluted−HCl solutions. Therefore, Ni-GaAs alloys formed by solid phase reaction could be promising metallic source/drain structures with significant low series resistance for high mobility III–V metal-oxide-semiconductor field effect transistor (MOSFET) applications.
Abstract:The solid phase reactions of Ni with GaAs substrates are investigated. The experimental results reveal that the Ni-GaAs solid phase reaction forms a ternary phase of Ni2GaAs when annealing temperatures are in the range 250–300°C. As the annealing temperature increases to 400°C, the Ni2GaAs phase starts to decompose due to NiAs phase precipitation. Ni−GaAs alloys processed at 400°C with a 3 min annealing time demonstrate a sheet resistance of 30 Ω/square after unreacted Ni removal in hot diluted−HCl solutions. Therefore, Ni-GaAs alloys formed by solid phase reaction could be promising metallic source/drain structures with significant low series resistance for high mobility III–V metal-oxide-semiconductor field effect transistor (MOSFET) applications.
[1] Xuan Y, Wu Y Q, and Ye P D 2008 IEEE Electron Device Lett. 29 294[2] Xuan Y, Wu Y Q and Ye P D 2007 Tech. Dig. Int. Electron Device Meet. p 637[3] Huang M L, Chang Y C, Chang C H, Lee Y J, Chang P, Kwo J, Wu T B and Hong M 2005 Appl. Phys. Lett. 87 252104[4] Datta S, Dewey G, Fastenau J M, Hudait M K, Loubychev D, Liu W K, Radosavljevic M, Rachmady W and Chau R 2007 IEEE Electron Device Lett. 8 28[5] Kim S H, Yokoyama M, Taoka N, Iida R, Lee S, Nakane R, Urabe Y, Miyata N, Yasuda T, Yamada H, Fukuhara N, Hata M, Takenaka M and Takagi S 2010 Tech. Dig. Int. Electron Device Meet. p 596[6] Kim S H, Yokoyama M, Taoka N, Iida R and Lee S 2011 Appl. Phys. Express 4 024201[7] Zhang X G, Guo H X, Gong X, Zhou Q, Lin Y R, Lin H Y, Ko C H, Wann C H and Yeo Y C 2011 Electrochem. Solid State Lett. 14 H60[8] Zhang X G, Guo H X, Lin H Y, Ivana, Gong X, Zhou Q, Lin Y R, Ko C H, Wann C H and Yeo Y C 2011 Electrochem. Solid State Lett. 14 H212[9] Yeo Y C, Chin H C, Gong X, Guo H X and Zhang X G 2011 219th ECS Meeting p 1217[10] Shih Y C, Murakami M and Price W H 1989 J. Appl. Phys. 65 3539[11] Tsunoda Y and Murakami M 2002 J. Electr. Mater. 3176[12] Murakami M, Childs K D, Baker J M and Callegari A 1986 J. Vac. Sci. Technol. B 4 903[13] Guivarc'h A, Guerin R, Caulet J, Poudoulec A and Fontenille J 1989 J. Appl. Phys. 66 2129[14] Lahav A, Eizenberg M and Komem Y 1986 J. Appl. Phys. 60 991[15] Yamaguchi A and Asamizu H 1999 J. Appl. Phys. 85 7792[16] Waldrop J R and Grant R W 1979 Appl. Phys. Lett. 34 630[17] Chen S H, Carter C B, Palmstrom C J and Ohashi T 1986 Appl. Phys. Lett. 48 803[18] Guivarc'h A, Caulet J and Minier M 1994 J. Appl. Phys. 75 5061[19] Guenna R and Guivarc'h A 1989 J. Appl. Phys. 66 2122[20] Wuyts J W, Silverans R E, Van H M and Rossum M V 1994 J. Appl. Phys. 75 2055[21] Rainer S F 1988 J. Electr. Mater. 17 193[22] Sands T, Keramidas V G, Washburn J and Gronsky R 1986 Appl. Phys. Lett. 48 402[23] Zhang S L, Gant T A, Delaney M, Klein M V, Klem J and Morkoc H 1988 Chin. Phys. Lett. 5 113[24] Xiao G M, Yin S D, Zhang J P, Fan T W, Liu J R, Ding A J, Zhou J M and Zhu P R 1989 Chin. Phys. Lett. 6 451[25] University of Arizona Mineral Museum (3636) RRUFF R060121(Nickeline)\\ http://rruff.info/nickel/source/asc/R060121