摘要Accurate approximate analytical formulae of the pendulum period composed of a few elementary functions for any amplitude are constructed. Based on an approximation of the elliptic integral, two new logarithmic formulae for large amplitude close to 180° are obtained. Considering the trigonometric function modulation results from the dependence of relative error on the amplitude, we realize accurate approximation period expressions for any amplitude between 0 and 180°. A relative error less than 0.02% is achieved for any amplitude. This kind of modulation is also effective for other large-amplitude logarithmic approximation expressions.
Abstract:Accurate approximate analytical formulae of the pendulum period composed of a few elementary functions for any amplitude are constructed. Based on an approximation of the elliptic integral, two new logarithmic formulae for large amplitude close to 180° are obtained. Considering the trigonometric function modulation results from the dependence of relative error on the amplitude, we realize accurate approximation period expressions for any amplitude between 0 and 180°. A relative error less than 0.02% is achieved for any amplitude. This kind of modulation is also effective for other large-amplitude logarithmic approximation expressions.
XUE De-Sheng,ZHOU Zhao,GAO Mei-Zhen**. Accurate Period Approximation for Any Simple Pendulum Amplitude[J]. 中国物理快报, 2012, 29(4): 44601-044601.
XUE De-Sheng,ZHOU Zhao,GAO Mei-Zhen**. Accurate Period Approximation for Any Simple Pendulum Amplitude. Chin. Phys. Lett., 2012, 29(4): 44601-044601.
[1] Baker G L and Blackburn J A 2005 The Pendulum: A Case Study in Physics (Oxford: Oxford University)[2] Lima F M S 2008 Eur. J. Phys. 29 1091[3] Fay T H 2003 Int. J. Math. Educ. Sci. Technol. 34 527[4] Thornton S T and Marion J B 2004 Classical Dynamics of Particles and Systems 5th edn (New York: Brooks/Cole) p 155[5] Serway R A and Beichner R J 2004 Physics for Scientists and Engineers 6th edn (Orlando, FL: Harcourt Brace) p 468[6] Nelson R A and Olsson M G 1986 Am. J. Phys. 54 112[7] Curtis R K 1981 Phys. Teach. 19 36[8] Lewowski T and Wozmiak K 2002 Eur. J. Phys. 23 461[9] Lima F M S and Arun P 2006 Am. J. Phys. 74 892[10] Good R H 2001 Eur. J. Phys. 22 119[11] Amore P and Aranda A 2005 J. Sound Vib. 283 1115[12] Crawford J A 2004 Text U11610 http://www.am1.us/Papers[13] Cadwell L H and Boyco E R 1991 Am. J. Phys. 59 979[14] Millet L E 2003 Phys. Teach. 41 162[15] Carvalhaes C G and Suppes P 2008 Am. J. Phys. 76 1150[16] Beléndez A, Hernández A, Márquez A, Beléndez T and Neipp C 2006 Eur. J. Phys. 27 539[17] Kidd R B and Fogg S L 2002 Phys. Teach. 40 81[18] Molina M I 1997 Phys. Teach. 35 489[19] Ganley W P 1985 Am. J. Phys. 53 73[20] Parwani R R 2004 Eur. J. Phys. 25 37[21] Beléndez A, Hernández A, Beléndez T, Márquez A and Neipp C 2007 Int. J. Nonlin. Sci. Numer. Simul. 8 329[22] Hite G E 2005 Phys. Teach. 43 290[23] Beléndez A, Rodes J J, Beléndez T and Hernández A 2009 Eur. J. Phys. 30 L25[24] Yuan Q X and Ding P 2009 Eur. J. Phys. 30 L79[25] Cromer A 1995 Am. J. Phys. 63 112[26] Amore P, Valdovinos M C, Orneles G and Barajas S Z 2007 Rev. Mex. Fis. E 53 106[27] Zhang L M and Yuan Q X 2009 Chin. Sci. Tech. Infor. 15 50 (in Chinese)