A 171.4 W Diode-Side-Pumped Q-Switched 2 µm Tm:YAG Laser with a 10 kHz Repetition Rate
CAO Dong1,2,DU Shi-Feng1**,PENG Qin-Jun1,BO Yong1,XU Jia-Lin1,GUO Ya-Ding1,ZHANG Jing-Yuan1,CUI Da-Fu1,XU Zu-Yan1
1RCLPT, Key Lab of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 2Graduate University of the Chinese Academy of Sciences, Beijing 100190
A 171.4 W Diode-Side-Pumped Q-Switched 2 µm Tm:YAG Laser with a 10 kHz Repetition Rate
CAO Dong1,2,DU Shi-Feng1**,PENG Qin-Jun1,BO Yong1,XU Jia-Lin1,GUO Ya-Ding1,ZHANG Jing-Yuan1,CUI Da-Fu1,XU Zu-Yan1
1RCLPT, Key Lab of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 2Graduate University of the Chinese Academy of Sciences, Beijing 100190
摘要A 785 nm diode-side-pumped high-power high-pulse-repetition-frequency Q-switched 2 µm Tm:YAG laser system is reported. Under a pump power of 1300 W, a 171.4 W average output power is achieved at a pulse repetition frequency of 10 kHz. To our knowledge, this is the highest average output power for a diode−pumped all solid-state Q-switched 2 µm Tm:YAG laser. The laser output corresponds to an optical-to-optical conversion efficiency of 13.3% and a slope efficiency of 18.9%.
Abstract:A 785 nm diode-side-pumped high-power high-pulse-repetition-frequency Q-switched 2 µm Tm:YAG laser system is reported. Under a pump power of 1300 W, a 171.4 W average output power is achieved at a pulse repetition frequency of 10 kHz. To our knowledge, this is the highest average output power for a diode−pumped all solid-state Q-switched 2 µm Tm:YAG laser. The laser output corresponds to an optical-to-optical conversion efficiency of 13.3% and a slope efficiency of 18.9%.
[1] Gorajek Ł, Jabczyński J K, Żndzian W, Kwiatkowski J, Jelinkova H, Sulc J and Nemec M 2009 Opto-Electron. Rev. 17 309[2] Budni P A, Pomeranz L A, Lemons M L, Miller C A, Mosto J R and Chicklis E P 2000 J. Opt. Soc. Am. B 17 723[3] Zhu G L, Ju Y L, Meng P B, Yao B Q and Wang Y Z 2010 Laser Phys. 20 1329[4] Wu R F, Phua P B, Lai K S, Lim Y L, Lau E and Chng A 2000 Opt. Lett. 25 1460[5] Bai F, Wang Q P, Liu Z J, Zhang X Y, Sun W J, Wan X B, Li P, Jin G F and Zhang H J 2011 Opt. Lett. 36 813[6] Cui Q J, Zong N, Xu Y T, Lu Y F, Bo Y, Peng Q J, Cui D F and Xu Z Y 2009 Chin. Opt. Lett. 7 519[7] Phua P B, Lai K S and Wu R F 2000 Appl. Opt. 39 1435[8] Barnes N P, Amzajerdian F, Reichle D J, Carrion W A, Busch G E and Leisher P 2011 Appl. Phys. B 103 57[9] Yang X T, Ma X Z, Li W H and Liu Y 2011 Laser Phys. 21 2064[10] Zhou R L, Ju Y L, Wang W, Zhu G L and Wang Y Z 2011 Chin. Phys. Lett. 28 074210[11] Coluccelli N, Galzerano G and Laporta P 2006 Opt. Express 14 1518[12] Zhang S Y, Wang M J, Xu L, Wang Y, Tang Y L, Cheng X J, Chen W B, Xu J Q, Jiang B X and Pan Y B 2011 Opt. Express 19 727[13] Gao C Q, Lin Z F, Wang R, Zhang Y S, Gao M W and Zheng Y 2011 Laser Phys. 21 70[14] Zhang D X, Ju Y L, Wu C T and Wang Z G 2010 Laser Phys. 20 1945[15] Li L J, Yao B Q, Qin J P, Wu D Y, Wang Y M, Wang J, He Z L, Liu W Y, Chen J J, Wang Y Z, Zhang Z G and Li A H 2011 Laser Phys. 21 489[16] Shu S J, Yu T, Liu R T, Hou J Y, Hou X and Chen W B 2011 Chin. Opt. Lett. 9 091407[17] Ju Y L, He H D, Zhu G L, Yao B Q and Wang Y Z 2011 Laser Phys. 21 2036[18] Rustad G and Stenersen K 1997 IEEE J. Sel. Top. Quantum Electron. 3 82[19] Cao D, Peng Q J, Du S F, Xu J L, Guo Y D, Yang J, Bo Y, Zhang J Y, Cui D F and Xu Z Y 2011 Appl. Phys. B 103 83