New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach
Mohammad Najafi1**,Maliheh Najafi1,M. T. Darvishi2
1Department of Physiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran 2Department of Mathematics, Razi University, Kermanshah 67149, Iran
New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach
Mohammad Najafi1**,Maliheh Najafi1,M. T. Darvishi2
1Department of Physiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran 2Department of Mathematics, Razi University, Kermanshah 67149, Iran
摘要By means of modification of the extended homoclinic test approach (mEHTA), we obtain some new exact soliton solutions for the (2+1)-dimensional Ablowitz-Kaup-Newell-Segur (AKNS) equation by obtaining a bilinear closed form for it.
Abstract:By means of modification of the extended homoclinic test approach (mEHTA), we obtain some new exact soliton solutions for the (2+1)-dimensional Ablowitz-Kaup-Newell-Segur (AKNS) equation by obtaining a bilinear closed form for it.
Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. 中国物理快报, 2012, 29(4): 40202-040202.
Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach. Chin. Phys. Lett., 2012, 29(4): 40202-040202.
He J H 1999 Int. J. Non-linear Mech.34 699 Darvishi M T, Khani F and Soliman A A 2007 Comput. Math. Appl.54 1055 Darvishi M T and Khani F 2009 Chaos, Solitons and Fractals39 2484 Abbasbandy S and Darvishi M T 2005 Appl. Math. Comput.163 1265 Abbasbandy S and Darvishi M T 2005 Appl. Math. Comput.170 95 He J H 2006 Int. J. Mod. Phys. B 20 2561 He J H 2005 Chaos, Solitons and Fractals26 695 He J H 2005 Int. J. Nonlinear Sci. Numer. Simul.6 207 Darvishi M T and Khani F 2008 Z. Naturforsc. A 63 19 Darvishi M T, Khani F, Hamedi-Nezhad S and Ryu S W 2010 Int. J. Comput. Math.87 908 He J H 2001 Int. J. Nonlin. Sci. Numer. Simul.2 257 Darvishi M T, Karami A and Shin B C 2008 Phys. Lett. A372 5381 Shin B C, Darvishi M T and Karami A 2009 Int. J. Nonlin. Sci. Num. Simul.10 137 Darvishi M T 2004 Int. J. Pure Appl. Math.1 419 Darvishi M T, Kheybari S and Khani F 2006 Appl. Math. Comput.182 98 Darvishi M T and Javidi M 2006 Appl. Math. Comput.173 421 Darvishi M T, Khani F and Kheybari S 2007 Int. J. Comput. Math.84 541 Darvishi M T, Khani F and Kheybari S 2008 Nonlinear Sci. Numer. Simul.13 2091 Liao S J 1999 Int. J. Non-Linear Mech.34 759 Liao S J 2003 Beyond Perturbation: Introduction to the Homotopy Analysis Method (Boca Raton: Chapman & Hall/CRC Press) Liao S J 2004 Appl. Math. Comput.147 499 Liao S J 2005 Int. J. Heat Mass Transfer48 2529 Liao S J 2009 Commun. Nonlinear Sci. Numer. Simul.14 2144 Darvishi M T and Khani F 2009 Comput. Math. Appl.58 360 Aziz A, Khani F and Darvishi M T 2010 Z. Naturforsc. A 65 771 He J H and Abdou M A 2007 Chaos, Solitons and Fractals34 1421 He J H and Wu X H 2006 Chaos, Solitons and Fractals30 700 He J H and Wu X H 2006 Chaos, Solitons and Fractals29 108 Khani F, Hamedi-Nezhad S, Darvishi M T and Ryu S W 2009 Nonlin. Anal.: Real World Appl.10 1904 Shin B C, Darvishi M T and Barati A 2009 Comput. Math. Appl.58 2147 Wu X H and He J H 2008 Chaos, Solitons and Fractals38 903 Dai Z D, Lin S Q, Li D L and Mu G 2010 Nonl. Sci. Lett. A1 77 Wang C J, Dai Z D and Liang L 2010 Appl. Math. Comput.216 501 Yu S J, Toda K, Sasa N and Fukuyama T 1998 J. Phys. A: Math. Gen.31 3337 Yan Z 2003 Phys. Lett. A318 78 Zhao Z H, Dai Z D and Han S 2010 Appl. Math. Comput.217 4306 Darvishi M T and Najafi M 2011 Chin. Phys. Lett.28 040202