摘要Using the transverse Ising model theory, a ferroelectric bilayer film, considering the surface transition layer within each constituent slab and an interfacial coupling between two slabs, is investigated in the framework of the mean-field approximation. We discuss in detail the thickness effects of the spontaneous polarization and dielectric susceptibility of a ferroelectric bilayer film under two conditions of interfacial coupling: ferroelectric and antiferroelectric coupling. The results show some unexpected phenomena for a small thickness of a ferroelectric bilayer film.
Abstract:Using the transverse Ising model theory, a ferroelectric bilayer film, considering the surface transition layer within each constituent slab and an interfacial coupling between two slabs, is investigated in the framework of the mean-field approximation. We discuss in detail the thickness effects of the spontaneous polarization and dielectric susceptibility of a ferroelectric bilayer film under two conditions of interfacial coupling: ferroelectric and antiferroelectric coupling. The results show some unexpected phenomena for a small thickness of a ferroelectric bilayer film.
CUI Lian*, XU Quan, HAN Zhi-You, XU Xu. Size Effects of the Properties in a Ferroelectric Bilayer Film with Surface Transition Layers[J]. 中国物理快报, 2012, 29(3): 37701-037701.
CUI Lian, XU Quan, HAN Zhi-You, XU Xu. Size Effects of the Properties in a Ferroelectric Bilayer Film with Surface Transition Layers. Chin. Phys. Lett., 2012, 29(3): 37701-037701.
[1] Ahluwalia R and Srolovitz D J 2007 Phys. Rev. B 76 174121
[2] Dawber M, Rabe K M and Scott J F 2005 Rev. Mod. Phys. 77 1083
[3] Gharbi M, Sun Z H, Sharma P, White K and ElBorgi S 2011 Inter. J. Solid. Strut. 48 249
[4] Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T and Streiffer S 2006 J. Appl. Phys. 100 051606
[5] Wesselinowa J M 2001 Phys. Status Solidi B 223 737
[6] Wang C L, Zhong W L and Zhang P L 1992 J. Appl: Condens. Matter 3 4743
[7] Wang C L, Smith R P and Tilley D R 1994 J. Appl: Condens. Matter 6 9633
[8] Wu J G, Xiao D Q, Zhu J G, Zhu J L, Tan J Z and Zhang Q L 2007 Appl. Phys. Lett. 90 082902
[9] Shimuta T, Nakagawara O, Makino T, Arai S, Tabata H and Kawai T 2002 J. Appl. Phys. 91 2290
[10] Qiu J H and Jiang Q 2009 Solid State Commun. 149 1549
[11] Wu X F, Stengel M, Rabe K M and Vanderbilt D 2008 Phys. Rev. Lett. 101 087601
[12] Cooper V R, Johnston K and Rabe K M 2007 Phys. Rev. B 76 020103
[13] Singh J and Krupanidhi S B 2011 Surf. Sci. 257 2214
[14] Cui L, Lü T Q, Xu X and Zhou J 2009 J. Appl. Phys. 105 104104
[15] Sun P N, Cui L and Lü T Q 2009 Chin. Phys. B 18 1658
[16] Cui L, Lü T Q, Sun P N and Xue H J 2010 Chin. Phys. B 19 077701
[17] Guo Y P, Li M, Zhao W, Akai D, Sawada K, Ishida M, Gu M Y 2009 Thin Solid Films 517 2974
[18] Zheng C D, Zhang D M, Liu X M, Yang B, Liu C J and Yu J 2010 Chin. Phys. Lett. 27 017702
[19] Qu B D, Zhong W L and Prince R H 1997 Phys. Rev. B 55 11218
[20] Jiang W and Lo V C 2005 Phys. Status Solidi B 242 1132
[21] Wang C L and Tilley D R 2001 Solid State Commun. 118 333
[22] Tabata H, Tanaka H and Kawai T 1994 Appl. Phys. Lett. 65 1970
[23] Ranjith R, Nikhil R and Krupanidhi S B 2006 Phys. Rev. B 74 184104
[24] Wu J G, Zhu J L, Xiao D Q and Zhu J G 2007 Appl. Phys. Lett. 91 212905
[25] Tabyaoui A, Ainane A and Saber M 2004 Physica A 333 24
[26] Wu Y Z, Yao D L and Li Z Y 2002 J. Appl. Phys. 91 1482
[27] Qu B D, Zhong W L and Zhang P L 1994 Phys. Rev. B 52 766
[28] Oubelkacem A, Esssaoudi I, Ainane A, Saber M, Dujardin F and Gonzalez J 2009 Phys. Status Solidi B 246 1723
[29] Oubelkacem A, Essaoudi I, Ainane A, Saber M, Gonzalez J and Bärner K 2009 Physica B 404 4190
[30] Pirc R and Blinc R 2004 Phys. Rev. B 70 134107
[31] Cao H X and Li ZY 2003 J. Appl: Condens. Matter 15 6301
[32] Qu B D, Evstigneev M, Johnson D J and Rrince R H 1998 Appl. Phys. Lett. 72 1394
[33] Ramos C A, Lederman D, King A R and Jaccarino V 1990 Phys. Rev. Lett. 65 2913