Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose–Einstein Condensation
CAO Ming-Tao1, HAN Liang1, QI Yue-Rong1, ZHANG Shou-Gang2, GAO Hong1**, LI Fu-Li1
1MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049 2 CAS Key Lab of Time & Frequency Primary Standard, National Time Service Center, Xi'an 710600
Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose–Einstein Condensation
CAO Ming-Tao1, HAN Liang1, QI Yue-Rong1, ZHANG Shou-Gang2, GAO Hong1**, LI Fu-Li1
1MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049 2 CAS Key Lab of Time & Frequency Primary Standard, National Time Service Center, Xi'an 710600
摘要We provide a theoretical study to calculate the spin-dependent optical lattice with rubidium Bose–Einstein condensation (BEC) in a steady magnetic field. The optical dipole potential variation at different Zeeman levels are obtained. We also show that atoms can be transported in three dimensions by changing the polarization of the trapping field. An explanation of this transportation process in an atomic coordinate is presented.
Abstract:We provide a theoretical study to calculate the spin-dependent optical lattice with rubidium Bose–Einstein condensation (BEC) in a steady magnetic field. The optical dipole potential variation at different Zeeman levels are obtained. We also show that atoms can be transported in three dimensions by changing the polarization of the trapping field. An explanation of this transportation process in an atomic coordinate is presented.
CAO Ming-Tao1, HAN Liang1, QI Yue-Rong1, ZHANG Shou-Gang2, GAO Hong1**, LI Fu-Li1. Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose–Einstein Condensation[J]. 中国物理快报, 2012, 29(3): 34201-034201.
CAO Ming-Tao, HAN Liang, QI Yue-Rong, ZHANG Shou-Gang, GAO Hong, LI Fu-Li. Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose–Einstein Condensation. Chin. Phys. Lett., 2012, 29(3): 34201-034201.
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University) chap 1 pp 2–10
[2] Zoller P, Cirac J I, Duan L and Garcia Ripoll J J 2004 arXiv:quant-ph/0405025
[3] Mandel O, Greiner M, Widera A, Rom T, Hansch T W and Bloch I 2003 Phys. Rev. Lett. 91 010407
[4] Micheli A, Daley A J, Jaksch D and Zoller P 2004 Phys. Rev. Lett. 93 140408
[5] Stoferle T, Moritz H, Schori C, Kohl M and Ess T 2004 Phys. Rev. Lett. 92 130403
[6] Barenco A, Bennett C H, Clever R, Divincenzo D P, Margolus N, Shor P, Sleator T and Weinfurter H 1995 Phys. Rev. A 52 3457
[7] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[8] Zhang C, Rolston S L and Sarma S D 2006 Phys. Rev. A 74 042316
[9] Merkel W, Mack H, Freyberger M, Kozlov V V and Schleich W P 2007 Phys. Rev. A 75 033420
[10] Forster L, Karski M, Choi J M, Steffen A, Alt W, Meschede D and Widera A 2009 Phys. Rev. Lett. 103 233001
[11] Brennen G K, Caves C M, Jessen P S and Deutsch I H 1999 Phys. Rev. Lett. 82 1060
[12] Jaksch D, Briegel H, Cirac J I, Gardiner C W and Zoller P 1999 Phys. Rev. Lett. 82 1975
[13] Grimm R, Weidemuller M and Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95
[14] McKay D and DeMarco B 2010 New J. Phys. 12 055013
[15] Deutsch I H and Jessen P S 1998 Phys. Rev. A 57 1972