Effect of N-Doping on Absorption and Luminescence of Anatase TiO2 Films
XIANG Xia1**, SHI Xiao-Yan1, GAO Xiao-Lin1, JI Fang2, WANG Ya-Jun2, LIU Chun-Ming1, ZU Xiao-Tao1
1Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054 2Institute of Mechanical Manufacture Technology, China Academy of Engineering Physics, Mianyang 621900
Effect of N-Doping on Absorption and Luminescence of Anatase TiO2 Films
XIANG Xia1**, SHI Xiao-Yan1, GAO Xiao-Lin1, JI Fang2, WANG Ya-Jun2, LIU Chun-Ming1, ZU Xiao-Tao1
1Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054 2Institute of Mechanical Manufacture Technology, China Academy of Engineering Physics, Mianyang 621900
摘要Anatase TiO2 films are deposited on glass substrates at different oxygen partial pressures of 0.8–1.6 Pa. Room temperature N ion implantation is conducted in the films at ion fluences up to 5×1017 ions/cm2. UV−visible absorption and photoluminescence (PL) are investigated. With the increase of N ion fluences, the band gap of TiO2 decreases and the absorbance increases. X-ray photoelectron spectroscopy (XPS) confirms the formation of O-Ti-N nitride after implantation, resulting in the red shift of the band gap. The PL intensity of the deposited films increases with the increasing oxygen partial pressure and decreases remarkably due to the irradiation defects induced by ion implantation.
Abstract:Anatase TiO2 films are deposited on glass substrates at different oxygen partial pressures of 0.8–1.6 Pa. Room temperature N ion implantation is conducted in the films at ion fluences up to 5×1017 ions/cm2. UV−visible absorption and photoluminescence (PL) are investigated. With the increase of N ion fluences, the band gap of TiO2 decreases and the absorbance increases. X-ray photoelectron spectroscopy (XPS) confirms the formation of O-Ti-N nitride after implantation, resulting in the red shift of the band gap. The PL intensity of the deposited films increases with the increasing oxygen partial pressure and decreases remarkably due to the irradiation defects induced by ion implantation.
XIANG Xia1**, SHI Xiao-Yan1, GAO Xiao-Lin1, JI Fang2, WANG Ya-Jun2, LIU Chun-Ming1, ZU Xiao-Tao1. Effect of N-Doping on Absorption and Luminescence of Anatase TiO2 Films[J]. 中国物理快报, 2012, 29(2): 27801-027801.
XIANG Xia, SHI Xiao-Yan, GAO Xiao-Lin, JI Fang, WANG Ya-Jun, LIU Chun-Ming, ZU Xiao-Tao. Effect of N-Doping on Absorption and Luminescence of Anatase TiO2 Films. Chin. Phys. Lett., 2012, 29(2): 27801-027801.
[1] Fujishima A 1972 Nature 238 37
[2] Keshmiri M, Mohseni M and Troczynski T 2004 Appl. Catal. B: Environ. 53 209
[3] Kiema G K, Colgan M J and Brett M J 2005 Sol. Energ. Mat. Sol. C 85 321
[4] Lan X H, Yang S Q, Zou Y, Wang Z A and Huang N K 2007 Chin. Phys. Lett. 24 3567
[5] Horprathum M, Chindaudom P and Limsuwan P 2007 Chin. Phys. Lett. 24 1505
[6] Zywitzki O, Modes T, Sahm H, Frach P, Goedicke K and Glö ß D 2004 Surf. Coat. Technol. 180 538
[7] Nakano Y, Morikawa T, Ohwaki T and Taga Y 2005 Appl. Phys. Lett. 86 132104
[8] Zhang X, Wang W, Li L, Cheng Y, Luo X and Liu H 2008 J. Phys. D: Appl. Phys. 41 015005
[9] Navío J A, Testa J J, Djedjeian P, Padrón J R and Rodríguez D 1999 Appl. Catal. A: Gen. 178 191
[10] Wang X P, Yu Y, Hu X F and Gao L 2000 Thin Solid Films 371 148
[11] Wan L, Li J F, Feng J Y, Sun W and Mao Z Q 2007 Appl. Surf. Sci. 253 4764
[12] Zeman P and Takabayashi S 2002 Surf. Coat. Technol. 153 93
[13] Sreemany M and Sen S 2004 Mater. Chem. Phys. 83 169
[14] Cong Y, Zhang J, Chen F and Anpo M 2007 J. Phys. Chem. C 111 6976
[15] Francois J C, Massiani Y, Gravier P, Grimblot J and Gengembre L 1993 Thin Solid Films 223 223
[16] Liu B, Zhao X, Zhao Q, He X and Feng J 2005 J. Electron. Spectrosc. 148 158
[17] Tang H, Prasad K, Sanjines R, Schmid P E and Levy F 1994 J. Appl. Phys. 75 2042
[18] Wu J M, Shih H C, Wu W T, Tseng Y K and Chen I 2005 J. Cryst. Growth 281 384