A diode-end-pumped electro-optic (EO) Q-switched adhesive-free bond composite Nd:YVO4 laser operating at a repetition rate of 200 kHz is reported. A pair of RbTiOPO4 (RTP) crystals are used as a high repetition EO Q-switch. At the repetition rate of 200 kHz, the maximum average output power of 11.8 W at wavelength 1064 nm and full width at half maximum of pulses of 16.65 ns are achieved at an incident pump power of 27 W, corresponding to an optical conversion efficiency of 43.7% and a slope efficiency of 44.6%, respectively. To the best of our knowledge, this is the highest repetition rate reported on the EO Q-switched laser by using RTP crystals.
A diode-end-pumped electro-optic (EO) Q-switched adhesive-free bond composite Nd:YVO4 laser operating at a repetition rate of 200 kHz is reported. A pair of RbTiOPO4 (RTP) crystals are used as a high repetition EO Q-switch. At the repetition rate of 200 kHz, the maximum average output power of 11.8 W at wavelength 1064 nm and full width at half maximum of pulses of 16.65 ns are achieved at an incident pump power of 27 W, corresponding to an optical conversion efficiency of 43.7% and a slope efficiency of 44.6%, respectively. To the best of our knowledge, this is the highest repetition rate reported on the EO Q-switched laser by using RTP crystals.
YU Yong-Ji, CHEN Xin-Yu, WANG Chao, WU Chun-Ting, LIU Rui, JIN Guang-Yong**. A 200 kHz Q-Switched Adhesive-Free Bond Composite Nd:YVO4 Laser using a Double-Crystal RTP Electro-optic Modulator[J]. 中国物理快报, 2012, 29(2): 24206-024206.
YU Yong-Ji, CHEN Xin-Yu, WANG Chao, WU Chun-Ting, LIU Rui, JIN Guang-Yong. A 200 kHz Q-Switched Adhesive-Free Bond Composite Nd:YVO4 Laser using a Double-Crystal RTP Electro-optic Modulator. Chin. Phys. Lett., 2012, 29(2): 24206-024206.
[1] Liu L R 2007 Chin. J. Lasers 34 3[2] Zhou J, Xu S Z, Hou X, Wei H and Chen W B 2006 Chin. Phys. Lett. 23 129[3] Pan Q J, Fang Q H and Yang Y 2007 Laser Optoelectron. Prog. 44 33[4] Gao J, Yu X, Chen F, Li X D, Zhang Z, Yu J H and Wang Y Z 2008 Chin. Phys. Lett. 25 119[5] Besotosnii V, Cheshev E, Gorbunkov M, Kostryukov P, Krivonos, Tunkin V and Jakovlev D 2010 Appl. Phys. B 101 71 [6] Zhou R L, Ju Y L, Wang W, Zhu G L and Wang Y Z 2011 Chin. Phys. Lett. 28 074210[7] Wang C Y, Ji J H, Qi Y F, Lou Q H, Zhu X L and Lu Y T 2006 Chin. Phys. Lett. 23 1797[8] Liu J S and Liu J J 2008 Chin. Phys. Lett. 25 1293[9] Zhang H L, Yan Y, Li D J, Shi P and Du K M 2008 Chin. Phys. Lett. 25 3676[10] Zhong K, Wang Y Y, Xu D G, Geng Y F, Wang J L, Wang P and Yao J Q 2009 Chin. Phys. Lett. 26 064210[11] Du K M, Li D J, Zhang H L, Shi P, Wei X Y and Diart R 2003 Opt. Lett. 28 87 [12] Manni J G, Hybl J D, Rand D, Ripin D J, Ochoa J R and Fan T Y 2010 IEEE J. Quantum Electron. 46 95 [13] Wang C Y, Zang H G, Li X L, Lu Y T and Zhu X L 2006 Chin. Opt. Lett. 4 329[14] Tang H, Zhu X L, Meng J Q and Zang H G 2010 Acta Opt. Sin. 30 137[15] Roth M, Angert N, Tseitlin M, Wang G, Han T P J, Gallagher H G, Leonyuk N I, Koporulina E V, Barilo S N and Kurnevich L A 2000 Proc. 3rd Int. Conf. Single Crystal Growth, Strength Problems and Heat and Mass Transfer (Obninsk) 2 416[16] Yu X, Wang C, Chen F, Yan R P, Ma Y F, Li X D and Peng J B 2011 Laser Phys. 21 442