摘要We present the pseudorapidity distributions of charged particles in nucleus-nucleus collisions as functions of beam energy and impact parameter through weighted superposition of the pseudorapidity distributions in the effective binary nucleon-nucleon collisions. Using the theoretical model we then analyze the experimental measurements carried out by the BNL-RHIC-PHOBOS collaboration in Cu+Cu collisions at sNN1/2=200, 62.4 and 22.4 GeV. The model has only two free parameters and the theoretical results favor the experimental measurements well.
Abstract:We present the pseudorapidity distributions of charged particles in nucleus-nucleus collisions as functions of beam energy and impact parameter through weighted superposition of the pseudorapidity distributions in the effective binary nucleon-nucleon collisions. Using the theoretical model we then analyze the experimental measurements carried out by the BNL-RHIC-PHOBOS collaboration in Cu+Cu collisions at sNN1/2=200, 62.4 and 22.4 GeV. The model has only two free parameters and the theoretical results favor the experimental measurements well.
(Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))
JIANG Zhi-Jin**, SUN Yu-Fen. Energy and Centrality Dependences of Pseudorapidity Distributions of Charged Particles in Cu+Cu Collisions[J]. 中国物理快报, 2012, 29(2): 22502-022502.
JIANG Zhi-Jin, SUN Yu-Fen. Energy and Centrality Dependences of Pseudorapidity Distributions of Charged Particles in Cu+Cu Collisions. Chin. Phys. Lett., 2012, 29(2): 22502-022502.
[1] Alver B et al (PHOBOS collaboration) 2003 Phys. Rev. Lett. 102 142301
[2] Back B B et al (PHOBOS collaboration) 2005 Nucl. Phys. A 757 28
[3] Back B B et al (PHOBOS collaboration) 2006 Phys. Rev. C 74 021901
[4] Abelev B I et al (STAR collaboration) 2010 Phys. Rev. C 81 054907
[5] Alver B et al (PHOBOS collaboration) 2011 Phys. Rev. C 83 024913
[6] Adare A et al (PHENIX collaboration) 2011 Phys. Rev. C 83 024909
[7] Aamodt K et al (ALICE collaboration) 2011 Phys. Rev. Lett. 106 032301
[8] Mitrovski M Schuster T, Gräf G, Petersen H and Bleicher M 2009 Phys. Rev. C 79 044901
[9] Petersen H, Mitrovski M, Schuster T and Bleicher M 2009 Phys. Rev. C 80 054910
[10] Wong C Y 2008 Phys. Rev. C 78 054902
[11] Bozek P and Wyskiel Piekarska I 2009 Phys. Rev. C 79 044916
[12] Osada T 2010 Phys. Rev. C 81 024907
[13] Renk T, Holopainen H, Heinz U and Shen C 2011 Phys. Rev. C 83 014910
[14] Munzinger B P Stachel J, Wessels J P and Xu N 1995 Phys. Lett. B 344 43
[15] Liu F H 2008 Chin. Phys. B 17 2458
[16] Hüfner J and Joern K 1997 Nucl. Phys. A 290 460
[17] Jeon S and Kapusta J I 1997 Phys. Rev. C 56 468
[18] Humanic T J 2009 Phys. Rev. C 79 044902
[19] Shao C E, Song J, Shao F L and Xie Q B 2009 Phys. Rev. C 80 014909
[20] Wong C Y 1984 Phys. Rev. D 30 961
[21] Wong C Y 2002 Introduction to High Energy Heavy Ion Collisions (Harbin: Harbin Institute of Technology Press) p 16
[22] Alner G J et al (UA5 collaboration) 1986 Z. Phys. C 33 1
[23] Thomé W, Eggert K and Giboni K et al 1977 Nucl. Phys. B 129 365
[24] Busza W 2004 arXiv:nucl-ex/0410035vl
[25] Adams J et al (STAR collaboration) 2004 Phys. Rev. Lett. 92 112301
[26] Adler S S et al (PHENIX collaboration) 2003 arXiv:nucl-ex/0307022vl
[27] Jiang Z J 2007 Acta Phys. Sin. 56 5191 (in Chinese)
[28] Back B B et al (PHOBOS collaboration) 2005 Phys. Rev. Lett. 94 082304
[29] Alver B et al (PHOBOS collaboration) 2006 Phys. Rev. Lett. 96 212301