摘要The generalized projective synchronization of different dimensional fractional order chaotic systems is investigated. According to the stability theory of linear fractional order systems, a sufficient condition to realize synchronization is obtained. The fractional order chaotic and hyperchaotic systems are applied to achieve synchronization in both reduced and increased dimensions. The corresponding numerical results coincide with theoretical analysis.
Abstract:The generalized projective synchronization of different dimensional fractional order chaotic systems is investigated. According to the stability theory of linear fractional order systems, a sufficient condition to realize synchronization is obtained. The fractional order chaotic and hyperchaotic systems are applied to achieve synchronization in both reduced and increased dimensions. The corresponding numerical results coincide with theoretical analysis.
WANG Sha**, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. 中国物理快报, 2012, 29(2): 20505-020505.
WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions. Chin. Phys. Lett., 2012, 29(2): 20505-020505.
[1] Kiani B A, Fallahi K, Pariz N and Leung H 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 863
[2] Matignon D 1996 Computational Engineering in Systems Applications (France: Lille) 963
[3] Mohammad S T and Mohammad H 2008 Physica A 387 57
[4] Wang X Y and Song J M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 3351
[5] Yu Y G and Li H X 2008 Physica A 387 1393
[6] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[7] Yu Y G and Li H X 2010 Nonlinear Anal. RWA 11 2456
[8] Miao Q Y, Fang J A, Tang Y and Dong A H 2009 Chin. Phys. Lett. 26 050501
[9] Vasegh N and Khellat F 2009 Chaos Solitons Fractals 42 1054
[10] Wang J W and Chen A M 2010 Chin. Phys. Lett. 27 110501
[11] Peng G J and Jiang Y L 2008 Phys. Lett. A 372 3963
[12] Peng G Y, Jiang Y L and Chen F 2008 Physica A 387 3738
[13] Chen L P, Chai Y and Wu R C 2011 Phys. Lett. A 375 2099
[14] Zhou P and Zhu W 2011 Nonlinear Anal. RWA 12 811
[15] Femat R and Alvarez Ramirez J 1997 Phys. Lett. A 236 307
[16] Terman D, Koppel N and Bose A 1998 Physica D 117 241
[17] Zhang G, Liu Z G and Ma Z J 2007 Chaos Solitons Fractals 32 773
[18] Miao Q Y, Fang J A, Tang Y and Dong A H 2009 Chin. Phys. Lett. 26 050501
[19] Wang S and Yu Y G 2010 Physica A 389 4981
[20] Wu X J, Li J and Chen G R 2008 J. Franklin Institute 345 392
[21] Hegazi A S and Matouk A E 2011 Appl. Math. Lett. 24 1938