Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries
Hermann T. Tchokouansi1,2**, Victor K. Kuetche1,2, Abbagari Souleymanou1,2, Thomas B. Bouetou1,2,3, Timoleon C. Kofane2
1National Advanced School of Engineering, University of Yaounde I, P.O. Box 8390, Cameroon 2Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Cameroon 3Department of Mathematics, Faculty of Science, University of Yaounde I, P.O. Box 812, Cameroon
Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries
Hermann T. Tchokouansi1,2**, Victor K. Kuetche1,2, Abbagari Souleymanou1,2, Thomas B. Bouetou1,2,3, Timoleon C. Kofane2
1National Advanced School of Engineering, University of Yaounde I, P.O. Box 8390, Cameroon 2Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Cameroon 3Department of Mathematics, Faculty of Science, University of Yaounde I, P.O. Box 812, Cameroon
摘要We carry out the hidden structural symmetries embedded within a system comprising ultra-short pulses which propagate in optical nonlinear media. Based upon the Wahlquist–Estabrook approach, we construct the Lie-algebra valued connections associated to the previous symmetries while deriving their corresponding Lax-pairs, which are particularly useful in soliton theory. In the wake of previous results, we extend the above prolongation scheme to higher-dimensional systems from which a new (2+1)-dimensional ultra-short pulse equation is unveiled along with its inverse scattering formulation, the application of which are straightforward in nonlinear optics where an additional propagating dimension deserves some attention.
Abstract:We carry out the hidden structural symmetries embedded within a system comprising ultra-short pulses which propagate in optical nonlinear media. Based upon the Wahlquist–Estabrook approach, we construct the Lie-algebra valued connections associated to the previous symmetries while deriving their corresponding Lax-pairs, which are particularly useful in soliton theory. In the wake of previous results, we extend the above prolongation scheme to higher-dimensional systems from which a new (2+1)-dimensional ultra-short pulse equation is unveiled along with its inverse scattering formulation, the application of which are straightforward in nonlinear optics where an additional propagating dimension deserves some attention.
Hermann T. Tchokouansi1,2**, Victor K. Kuetche1,2, Abbagari Souleymanou1,2, Thomas B. Bouetou1,2,3, Timoleon C. Kofane2. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. 中国物理快报, 2012, 29(2): 20501-020501.
Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries. Chin. Phys. Lett., 2012, 29(2): 20501-020501.
[1] Brabec T and Kraus Z F 2000 Rev. Mod. Phys. 72 545
[2] Kim A V and Skobelev S A 2011 Phys. Rev. A 83 063832
[3] Mamyshev P V and Chernikov S V 1990 Opt. Lett. 15 1076
[4] Banici R and Ursescu D 2011 Eur. Phys. Lett. 94 44002
[5] Lin Y Y, Chen I H and Lee R K 2011 Phys. Rev. A 83 043832
[6] Kozlov S A and Sazonov S V 1997 JETP 84 221
[7] Ginzburg V L 1970 The Propagation of Electromagnetic Waves in Plasmas (Oxford: Pergamon Press)
[8] Kivshar Y S and Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (New York: Academic)
[9] Harrison B K 2005 Sym. Int. Geo. M. Appl. (SIGMA) 1 1
[10] Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1
[11] Schäfer T and Wayne C E 2004 Physica D 196 90
[12] Chung Y, Jones C K R T, Schäfer T and Wayne C E 2005 Nonlinearity 18 1351
[13] Ichikawa Y H, Konno K and Wadati M 1981 J. Phys. Soc. Jpn. 50 1799
[14] Kuetche V K, Bouetou T B and Kofane T C 2007 J. Phys. A 40 5585
[15] Yao Y and Zeng Y 2011 J. Phys. Soc. Jpn. 80 064004
[16] Cartan E 1945 Les Systèmes Différentiels Extérieurs et Leurs Applications Géométriques (Paris: Hermann)
[17] Kobayashi S and Nomisu K 1963 Foundations of Differential Geometry (New York: Wiley)
[18] Wadati M, Konno K and Ichikawa Y H 1979 J. Phys. Soc. Jpn. 47 1698
[19] Morris H C 1976 J. Math. Phys. 17 1870
[20] Morris H C 1977 J. Math. Phys. 18 533
[21] Hermann R 1976 Phys. Rev. Lett. 36 835
[22] Hermann R 1975 Interdisciplinary Mathematics (Brookline: Math. Sci. Press)