Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling
ZHANG Bao-Cheng1,2, CAI Qing-Yu1, ZHAN Ming-Sheng1,2
1State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071
Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling
ZHANG Bao-Cheng1,2, CAI Qing-Yu1, ZHAN Ming-Sheng1,2
1State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071
摘要We revisit Parikh–Wilczek tunneling through the de Sitter horizon and obtain the tunneling rate in Schwarzschild-de Sitter space, which is non-thermal and closely related to the change of entropy. We discuss the thermodynamics of Schwarzschild-de Sitter space and show existence of correlation which can ensure conservation of the total entropy in the transition process of Schwarzschild-de Sitter space to de Sitter space. The correlation and the conserved entropy provide a way to explain the entropy in empty de Sitter space.
Abstract:We revisit Parikh–Wilczek tunneling through the de Sitter horizon and obtain the tunneling rate in Schwarzschild-de Sitter space, which is non-thermal and closely related to the change of entropy. We discuss the thermodynamics of Schwarzschild-de Sitter space and show existence of correlation which can ensure conservation of the total entropy in the transition process of Schwarzschild-de Sitter space to de Sitter space. The correlation and the conserved entropy provide a way to explain the entropy in empty de Sitter space.
ZHANG Bao-Cheng1,2, CAI Qing-Yu1, ZHAN Ming-Sheng1,2. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. 中国物理快报, 2012, 29(2): 20401-020401.
ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling. Chin. Phys. Lett., 2012, 29(2): 20401-020401.
[1] Hawking S W 1975 Commun. Math. Phys. 43 199
[2] Hartle J B and Hawking S W 1976 Phys. Rev. D 13 2188
[3] Page D N 1976 Phys. Rev. D 13 198
[4] Unruh W G 1976 Phys. Rev. D 14 870
[5] Parikh M K and Wilczek F 2000 Phys. Rev. Lett. 85 5042
[6] Zhang B, Cai Q Y, You L and Zhan M S 2009 Phys. Lett. B 675 98
[7] Vagenas E C 2001 Phys. Lett. B 503 399
[8] Zhang J and Zhao Z 2005 J. High Energy Phys. 10 055
[9] Ren J, Zhao Z and Gao C J 2005 Chin. Phys. Lett. 22 2489
[10] Jiang Q Q, Wu S Q and Cai X 2006 Phys. Rev. D 73 064003
[11] Jiang K J, Ke S M, Peng D T and Feng J 2009 Chin. Phys. Lett. 26 070401
[12] Criscienzo R D, Nadalini M, Vanzo L, Zerbini S and Zoccatelli G 2007 Phys. Lett. B 657 107
[13] Kerner R and Mann R B 2007 Phys. Rev. D 75 084022
[14] Sarkar S and Kothawala D 2008 Phys. Lett. B 659 683
[15] Pilling T 2008 Phys. Lett. B 660 402
[16] Zhang B, Cai Q Y and Zhan M S 2008 Phys. Lett. B 665 260
[17] Zhang B, Cai Q Y and Zhan M S 2009 Phys. Lett. B 671 310
[18] Criscienzo R D, Hayward S A, Nadalini M, Vanzo L and Zerbini S 2009 arXiv:0906.1725 [gr-qc]
[19] Parikh M K 2002 Phys. Lett. B 546 189
[20] Medved A J M 2002 Phys. Rev. D 66 124009
[21] Shankaranarayanan S 2003 Phys. Rev. D 67 084026
[22] Bousso R 2002 arXiv:hep-th/0205177
[23] Gibbons G W and Hawking S W 1977 Phys. Rev. D 15 2738
[24] Deser S and Jackiw R 1984 Ann. Phys. 153 405
[25] Spradlin M, Strominger A and Volovich A 2001 arXiv:hep-th/0110007
[26] Balasubramanian V, de Boer J and Minic D 2002 Phys. Rev. D 65 123508
[27] Susskind L and Lindesay J 2005 Black Hole, Information and the String Theory Revolution (Danvers: World Scientific)
[28] Zhang B, Cai Q Y, Zhan M S and You L 2011 Ann. Phys. 326 350
[29] Zhang B, Cai Q Y, Zhan M S and You L 2011 Gen. Relativ. Gravit. 43 797